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Abstract: This article considers the CUSUM-based (cumulative sum) test for a change

point in a time series. In the case of testing for a mean shift, the traditional Kolmogorov-

Smirnov test statistic involves a consistent long run variance estimator, which is needed to

make the limiting null distribution free of nuisance parameters. The commonly used lag-

window type long run variance estimator requires to choose a bandwidth parameter and its

selection is a difficult task in practice. The bandwidth that is a fixed function of the sample

size (e.g., n1/3, where n is sample size) is not adaptive to the magnitude of the dependence

in the series, whereas the data-dependent bandwidth could lead to nonmonotonic power

as shown in previous studies. In this article, we propose a self-normalization (SN) based

Kolmogorov-Smirnov test, where the formation of the self-normalizer takes the change

point alternative into account. The resulting test statistic is asymptotically distribution

free and its power is monotonic. Furthermore, we extend the SN-based test to test for

a change in other parameters associated with a time series, such as marginal median,

autocorrelation at lag one, and spectrum at certain frequency bands. The use of the SN

idea thus allows a unified treatment and offers a new perspective to the large literature of

change point detection in the time series setting. Monte Carlo simulations are conducted

to compare the finite sample performance of the new SN-based test with the traditional

Kolmogorov-Smirnov test. Illustrations using real data examples are presented.
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1 Introduction

In the modeling of time series, structural stability is of prime importance. To assess struc-

tural stability, it is of practical interest to test for change points in a time series in view

of the often empirical evidence for structural change. There is a huge literature on testing

for change points (structural changes) for a sequence of independent and identically dis-

tributed (iid) random variables; see Csörgő and Horváth (1997), Brodsky and Darkhovskay

(1993) for accounts of various methods. From a methodological standpoint, the test statis-

tics developed for change point detection in the iid context may not work in the time series

setup and suitable modification is needed to account for the temporal dependence in the

data; see e.g., Tang and MacNeill (1993), Antoch, Hus̆ková and Prášková (1997). In the

case of testing for a mean shift, a common finding is that one needs to obtain a consistent

estimate of the so-called long run variance, or equivalently the spectral density function

at zero frequency. Typically, a bandwidth parameter is involved in consistent estimation

and its selection greatly affects the finite sample performance. In the literature, it has

been found that the data-dependent bandwidth could lead to the nonmonotonic power

problem. In other words, the power can decrease when the alternative gets farther away

from the null. Both theoretical and empirical studies show that the nonmonotonic power

is due to the data dependent bandwidth, which is designed under the null and may be

severely biased under the alternative. Nonmonotonic power is an undesirable feature of

a test statistic, so methods have been proposed to overcome the problem; see Altissimo

and Corradi (2003) and Juhl and Xiao (2009). However, the methods proposed in the

above-mentioned papers involve a choice of another bandwidth parameter. As mentioned

by Perron (2006), “there is no reliable method to appropriately choose this parameter in

the context of structural changes”. In this sense, the nonmonotonic power problem remains

to be solved.

In this article, we propose a new test statistic to test for a change point in the mean.

The basic ingredient of our proposal is to extend the self-normalization (SN) idea (see

Lobato 2001; Shao 2010) into the change point detection problem. The extension is very

nontrivial as a naive extension is shown to fail in Section 2.2. The SN-based test does not

involve any user-chosen number or smoothing parameter. Its asymptotic null distribution

2



is pivotal and the (approximate) critical values are tabulated through simulations. The

test is simple to implement yet powerful in the sense that it is consistent and achieves
√

n local power. A desirable feature of the SN-based test is that its empirical power is

seen to be monotonic, although there is a moderate power loss compared to the traditional

Kolmogorov-Simrov test. As a compensation, the SN-based test has better size. The

“better size but less power” phenomenon for the SN-based test is consistent with the

findings in other testing contexts; see Lobato (2001).

There has been a large amount of work on change point detection in the time series

setting. Here we do not try to provide a complete list of references, but mention some

representative works. In the literature, the tests developed for univariate/multivariate

time series include Horváth, Kokoszka and Steinebach (1999), Vogelsang (1998, 1999) for

a change in the mean; Inclan and Tiao (1994), Lee and Park (2001), Gombay, Horváth

and Hus̆ková (1996) for a change in the marginal variance; Giraitis, Leipus and Surgailis

(1996) and Inoue (2001) for a change in the marginal distribution function; Picard (1985),

Giraitis and Leipus (1992), and Lavielle and Ludena (2000) for a change in the spectrum;

Berkes, Gombay and Horváth (2009), Galeano and Peña (2007) for a change in the au-

tocovariance function at certain lags. For change point detection in time series models

or regression models with dependent errors, see Andrews (1993), Davis, Huang and Yao

(1995), Lee, Ha and Na (2003), Ling (2007), Qu and Perron (2007), Aue, Horváth, Hus̆ková

and Kokoszka (2008), Gombay (2008), among others. We refer the interested readers to

the excellent review articles by Kokoszka and Leipus (2002) and Perron (2006) for more

references. It seems that the techniques developed for change point detection are specific

to the quantity/parameter of interest. For example, the test for a change in variance is

quite different from the test for a change in spectrum. This brings considerable difficulty

to the practitioners, who want to use these tests routinely to check the stability of certain

characteristics of a time series at hand. In this article, we build on the new SN-based test

for the mean, adopt the idea of recursive estimation in Shao (2010), and further extend

our test to test for a change in other parameters associated with a time series, such as

marginal variance, marginal quantile, autocovariance/autocorrelation at ceratin lags, and

spectrum at certain frequency bands. We establish a unified framework to allow the test

for a change in the above-mentioned parameters to be treated in the same fashion. As
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a result, our test can be readily used by the applied researchers in their analysis of time

series data.

The rest of the article is organized as follows. Section 2 describes the traditional

Kolmogorov-Smirnov test statistic and its practical difficulty in choosing the smoothing

parameter, discusses the idea of self-normalization, and introduces our new SN-based test

statistic with its power properties. Section 3 extends the SN-based test statistic developed

for the mean case to a more general framework. Section 4 presents simulation results to

examine the finite sample size and power properties of our new test in comparison with the

traditional Kolmogorov-Smirnov test, where consistent estimation of asymptotic variance

is involved. Empirical illustrations are provided in Section 5 and conclusions are made in

Section 6. We leave the technical details to the Appendix.

2 Testing for a change in mean

Suppose our interest is to test for a change point in the mean of a univariate time series,

i.e.,

H0 : E(X1) = · · · = E(Xn) = µ

versus

Ha : E(X1) = · · · = E(Xk∗) 6= E(Xk∗+1) = · · · = E(Xn), 1 ≤ k∗ < n is unknown.

To facilitate our discussion, we introduce some notation. Let D[0, 1] be the space of

functions on [0, 1] which are right continuous and have left limits, endowed with the Sko-

rokhod topology (Billingsley 1968). Denote by “⇒” weak convergence in D[0, 1] or more

generally in the Rd-valued function space Dd[0, 1], where d ∈ N. For a column vector

x = (x1, · · · , xq)
′ ∈ Rq, let |x| = (

∑q
j=1 x2

j)
1/2. The symbol op(1) signifies convergence to

zero in probability. Denote by bac the integer part of a ∈ R.

Let γ(k) = cov(X0, Xk), f(λ) = (2π)−1
∑∞

k=−∞ γ(k)e−ikλ and X̄n = n−1
∑n

t=1 Xt. A

class of commonly used test statistics is based on the so-called CUSUM (cumulative sum)

process, which is defined as

Tn(bnrc) = n−1/2

bnrc∑
t=1

(Xt − X̄n), r ∈ [0, 1].
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Under appropriate moment and weak dependence assumptions on Xt (see Phillips 1987),

we have that

1√
n

bnrc∑
t=1

{Xt − E(Xt)} ⇒ σB(r), (1)

where σ2 = limn→∞ nvar(X̄n) =
∑

k∈Z γ(k) > 0 is the so-called long run variance and B(r)

is the one-dimensional Brownian motion. Under the null hypothesis, we have Tn(bnrc) ⇒
σ{B(r)− rB(1)}. The well-known Kolmogorov-Smirnov test statistic is defined as

KSn = sup
r∈[0,1]

|Tn(bnrc)/σ̂n| = sup
k=1,··· ,n

|Tn(k)/σ̂n|,

where σ̂2
n is a consistent estimator of σ2. A commonly used estimate for σ2 admits the

form

σ̂2
n =

ln∑

k=−ln

γ̂(k)K(k/ln), (2)

where γ̂(k) = n−1
∑n−|k|

j=1 (Xj − X̄n)(Xj+|k| − X̄n) is the sample autocovariance estimate at

lag k, K(·) is a kernel function and l = ln is a bandwidth parameter. Under appropriate

regularity conditions, including 1/ln + ln/n = o(1), σ̂2
n is a consistent estimator of σ2, so

the asymptotic null distribution of KSn is supr∈[0,1] |B(r)−rB(1)|, for which critical values

have been tabulated in the literature.

A difficult issue in practice is the selection of l. Data-dependent l may yield non-

monotonic power as shown in Vogelsang (1999), Crainiceanu and Vogelsang (2007). The

fixed bandwidth is immune to the nonmonotonic power problem but does not perform well

across models with various degree of autocorrelations. The latter authors propose to use a

robust estimate of σ2 based on the ordinary least square regression residuals obtained un-

der the alternative. However, simulation results suggest that there is a large size distortion

when strong persistence is present; see Section 4.1. Also see Vogelsang (1999) for similar

findings. Theoretical analysis in Vogelsang (1999) and Deng and Perron (2008) show that

the decrease in power accompanied with larger shift is due to the fact that the bandwidth

l is severely biased upward, which leads to an inflation in the estimate of the scale. To

overcome the nonmonotonic power problem, Juhl and Xiao (2009) suggest to estimate the
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long run variance σ2 using the residuals obtained by nonparametric regression. However,

the size and power are both sensitive to the bandwidth used in nonparametric regression,

and there seems no satisfactory solution provided in their paper.

2.1 Some background on self-normalization

In this article, we propose a new test statistic, that bypasses direct estimation of σ2.

The basic idea is to extend the self-normalization (SN) method (Lobato 2001; Shao 2010)

to the change-point testing problem. For the sake of readership, we describe the SN

method in the context of inference for the marginal mean of a stationary time series.

Under appropriate mixing and moment conditions,
√

n(X̄n−µ) →D N(0, σ2), where “→D”

denotes convergence in distribution. In order to construct a confidence interval for µ, the

traditional approach replaces the unknown σ2 by its consistent estimate σ̂2
n; see (2). Since

n(X̄n − µ)2/σ̂2
n →D χ2(1), the confidence interval for µ is constructed using the critical

values from the χ2(1) distribution. A major difficulty associated with the traditional

approach is the choice of ln, which is a smoothing parameter whose effect does not appear

in the limiting distribution. To avoid the selection of ln, Lobato (2001) proposed the SN

approach as a good alternative to the traditional approach. Let D2
n = n−2

∑n
t=1{

∑t
j=1(Xj−

X̄n)}2. Assuming (1), then the continuous mapping theorem implies that

n(X̄n − µ)2/D2
n →D

B(1)2

∫ 1

0
{B(r)− rB(1)}2dr

=: U1.

The limiting distribution U1 is pivotal and its critical values have been tabulated by Lo-

bato (2001). The key ingredient is to replace the consistent estimator of σ2, as used in the

traditional approach, with the inconsistent estimator D2
n. Since the normalization factor

D2
n is proportional to σ2, the nuisance parameter σ2 is canceled out in the limiting distri-

bution of the resulting statistic. Kiefer and Vogelsang (2002) showed that 2D2
n = σ̂2

n when

K(x) = (1− |x|)1(|x| ≤ 1) (i.e., Bartlett kernel) and b = ln/n = 1. Thus the SN method

is a special case of the fixed-b paradigm, as advocated by Kiefer and Vogelsang (2005); see

Shao (2010) for more discussions.
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2.2 SN-based test statistics

Following the description of the SN idea in the previous subsection, a naive extension of

the SN idea to the change point testing problem is to replace σ̂n in KSn by Dn. In other

words, let

K̃Sn = sup
r∈[0,1]

|Tn(bnrc)/Dn| = sup
k=1,··· ,n

|Tn(k)/Dn|.

Under H0, K̃Sn →D supr∈[0,1] |B(r) − rB(1)|/[∫ 1

0
{B(r) − rB(1)}2dr]1/2. Figure 1 shows

the power (rejection percentage) of K̃Sn for the following alternative:

Xt =

{
ut, 1 ≤ t ≤ n/2,

η + ut, n/2 + 1 ≤ t ≤ n = 200,
(3)

where ut = 0.5ut−1 + εt, εt ∼ iid N(0, 1). It is seen that when the magnitude of change η

gets large, the power of K̃Sn decreases to zero. The complete loss of power is attributed to

the increase of the denominator in K̃Sn (i.e., Dn) with respect to η. So a naive extension

of the SN idea fails.

Please insert Figure 1 here!

The major problem with K̃Sn is that the self-normalizer (i.e., denominator) of K̃Sn

does not take into account the change point alternative. To circumvent the problem, we

propose the following SN-based test with a new self-normalizer, which accounts for the

one change point alternative. The SN-based test for multiple change point alternative is

discussed in Section 2.3. Let St1,t2 =
∑t2

j=t1
Xj if t1 ≤ t2 and 0 otherwise. We define the

normalization process Vn(·) as follows. For k = 1, · · · , n− 1, let

Vn(k) = n−2

[
k∑

t=1

{S1,t − (t/k)S1,k}2 +
n∑

t=k+1

{St,n − (n− t + 1)/(n− k)Sk+1,n}2

]
.

Our test statistic is defined as

Gn = sup
k=1,··· ,n−1

Tn(k)′V −1
n (k)Tn(k). (4)

Assuming (1), we can derive the limiting null distribution of Gn as

Gn →D sup
r∈[0,1]

{B(r)− rB(1)}′V −1(r){B(r)− rB(1)},
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where V (r) =
∫ r

0
{B(s)−(s/r)B(r)}2ds+

∫ 1

r
[B(1)−B(s)−(1−s)/(1−r){B(1)−B(r)}]2ds.

Note that the normalization factor Vn(k) in our test depends on k, whereas the normal-

ization factor in K̃Sn, i.e., Dn is the same for all k. This distinction has important

implications in their power behaviors. It is not hard to see that the magnitude of Vn(k∗)

does not depend on ∆n := E(Xk∗+1) − E(Xk∗) because the two sums in Vn(k∗), which

involve the forward partial sum before k∗ and the backward partial sum after k∗, are in-

variant with respect to ∆n. On the other hand, the larger the magnitude of ∆n, the larger

|Tn(k∗)| becomes. Heuristically, the magnitudes of Tn(k∗)′V −1
n (k∗)Tn(k∗) and Gn both get

larger (in distributional sense) as |∆n| increases, so we get more power. The monotonic

power for our test is also confirmed in simulation studies.

Next, we investigate the power of Gn under both local and fixed alternatives. Under

Ha, let k∗ = bλnc for λ ∈ (0, 1). The following theorem states the consistency of our test.

Theorem 2.1. Suppose that (1) holds. If ∆n = ∆ 6= 0 is fixed, then Gn diverges to ∞ in

probability. If ∆n = n−1/2L, L 6= 0, then lim|L|→∞ limn→∞ Gn = ∞ in probability.

We mention in passing that our SN-based test statistic is tailored to the testing problem.

To estimate a change point, presumably one can use k̂, where

k̂ = argmaxk=1,··· ,n−1Tn(k)′Vn(k)−1Tn(k).

However, it seems difficult to obtain the asymptotic distribution of k̂ as an estimator of

k∗. See Bai (1994, 1997) for early work on the estimation of a change point in the time

series setting.

As pointed out by a referee, our test statistic Gn can be made more general by in-

corporating a weighting scheme and replacing supk=1,··· ,n−1 by n−1
∑n−1

k=1 . Specifically, let

{w(t), t ∈ [0, 1]} be the weight function, which can reflect prior information about the

location of a change point. Then we can use sup1≤k≤n−1 w(k/n)Tn(k)′Vn(k)−1Tn(k) or

n−1
∑n−1

k=1 w(k/n)Tn(k)′Vn(k)−1Tn(k) to test for a change point. To keep the focus of the

article, we shall leave the asymptotic and finite sample investigations of these two test

statistics (with a few different weighting schemes) in a separate work.
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2.3 Multiple change point alternative

Our test statistic Gn is designed for single change point alternative and it can be extended

to allow for multiple change points. To illustrate the idea, we consider the case of two

change points. Let X̄t,t′ = (t′ − t + 1)−1
∑t′

j=t Xj for 1 ≤ t ≤ t′ ≤ n. For 1 ≤ n1 < n2 ≤ n,

we define a CUSUM process on the basis of the subsample {Xn1+1, . . . , Xn2} as

Tn1+1,n2(k) =
1√

n2 − n1

k∑
t=n1+1

(Xt − X̄n1+1,n2)

=
(n2 − k)(k − n1)

(n2 − n1)3/2
(Xn1+1,k −Xk+1,n2), n1 + 1 ≤ k ≤ n2.

We further extend Vn(k) to its subsampled version as

Vn1+1,n2(k) =
1

(n2 − n1)2

[
k∑

t=n1+1

{Sn1+1,t − (t− n1)/(k − n1)Sn1+1,k}2+

n2∑

t=k+1

{St,n2 − (n2 − t + 1)/(n2 − k)Sk+1,n2}2

]
, n1 + 1 ≤ k ≤ n2 − 1.

Fix 0 < ε < 1/3 and define Ωn(ε) := {(k1, k2) : bεnc ≤ k1 < k2 ≤ b(1−ε)nc, k2−k1 ≥ bεnc}.
For any (k1, k2) ∈ Ωn(ε), define

Hn(k1, k2) := T1,k2(k1)
′V −1

1,k2
(k1)T1,k2(k1) + Tk1+1,n(k2)

′V −1
k1+1,n(k2)Tk1+1,n(k2)

and Qn(ε) := sup(k1,k2)∈Ωn(ε) Hn(k1, k2). Similar to the one change point case, we can derive

the limiting null distribution of Qn(ε). The asymptotic critical values can be obtained

through simulations, although the computation would be more expensive in this case. The

extension to m ≥ 3 change points is quite straightforward so we omit the details here.

In practice, the number of change points may be unknown and needs to be estimated.

One approach is to treat the change point estimation and testing as a model selection

problem and adopt a suitably chosen information criterion; see Yao (1988) and Zhang and

Siegmund (2007) for the use of BIC and a modified version. Davis, Lee and Rodriguez-

Yam (2006) use minimum description length criterion to perform automatic segmentation

of a nonstationary time series and find the best combination of the number and location

of change points, as well as the order and the parameter estimates for the piecewise AR
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processes. Alternatively, one can use a sequential testing procedure to decide the number

of change points; see Bai and Perron (1998), Qu and Perron (2007) and the references

therein.

3 Testing for a change point in a general framework

In this section, we shall extend the SN-based change point test statistic from the mean

case to more general settings. We adopt the framework in Shao (2010) and let Fm denote

the m-th marginal distribution of Xt, where the dimension m is fixed but arbitrary. Let

Yt = (Xt, · · · , Xt+m−1)
′, t = 1, · · · , N = n−m+1 and Fm

t denotes the distribution of Yt.

Let θθθt = T(Fm
t ) ∈ Rq, t = 1, · · · , N be the quantity of interest, where T is a functional

that takes values in Rq. We are interested in testing

H0 : θθθ1 = · · · = θθθN

versus

Ha : θθθ1 = · · · = θθθk∗ 6= θθθk∗+1 = · · · = θθθN for some unknown k∗, 1 ≤ k∗ < N.

Important examples that fall into the above framework include: (i) marginal mean of Xt,

i.e., q = m = 1, T (F 1) =
∫
R xdF 1(x); (ii) marginal variance of Xt, i.e., q = m = 1,

T (F 1) =
∫
R x2dF 1(x) − {∫R xdF 1(x)}2; (iii) autocorrelation function at lags (1, · · · , k),

i.e., q = k, m = k + 1, and T(Fm) = (ρ(1), · · · , ρ(k))′, where ρ(k) = γ(k)/γ(0); (iv) p-th

quantile of the distribution F 1, where p ∈ (0, 1). In this case, T (F 1) = (F 1)−1(p).

Let ρρρN1,N2
be the empirical distribution based on {Yj}N2

j=N1
and θ̂θθN1,N2 = T(ρρρN1,N2

).

For any k = 1, · · · , N − 1, we define Tn(k) = k/
√

N(θ̂θθ1,k − θ̂θθ1,N) and

Vn(k) = N−2

{
k∑

t=1

t2(θ̂θθ1,t − θ̂θθ1,k)(θ̂θθ1,t − θ̂θθ1,k)
′ +

N∑

t=k+1

(N − t + 1)2(θ̂θθt,N − θ̂θθk+1,N)(θ̂θθt,N − θ̂θθk+1,N)′
}

.

Then our test statistic is Gn := supk=1,··· ,N−1 Tn(k)′Vn(k)−1Tn(k). In the foregoing ex-

pressions, we use both forward and backward recursive estimates to mimic the forward and

backward sums in the mean case. In the case of the mean, t(θ̂1,t − θ̂1,k) = S1,t − (t/k)S1,k

and our statistics Tn(k), Vn(k) and Gn reduce to those defined in Section 2.2.

10



Following Shao (2010), we restrict our attention to the so-called approximately linear

statistic T(ρρρ1,N), i.e.,

T(ρρρ1,N) = T(Fm) + N−1

N∑
t=1

IF(Yt;F
m) + R1,N ,

where IF(Yt;F
m) is the influence function of T (Hampel, Ronchetti, Rousseeuw and Stahel

1986) defined by

IF(y;Fm) = lim
ε↓0

T{(1− ε)Fm + εδy} −T(Fm)

ε

and R1,N is the reminder term. Similarly, we have that for any 1 ≤ N1 ≤ N2 ≤ N ,

T(ρρρN1,N2
) = T(Fm) + (N2 −N1 + 1)−1

N2∑
t=N1

IF(Yt;F
m) + RN1,N2 . (5)

To obtain the asymptotic null distribution of Gn, we impose the following two assump-

tions:

Assumption 3.1. Assume E{IF(Yt;F
m)} = 0 and

N−1/2

brNc∑
t=1

IF(Yt;F
m) ⇒ ∆Bq(r),

where ∆ is a q × q lower triangular matrix with nonnegative diagonal entries and Bq(·) is

a q-dimensional vector of independent Brownian motions. Assume that ∆∆′ = Σ(Fm) =∑∞
k=−∞ cov{IF(Y0;F

m), IF(Yk;F
m)} is positive definite.

Assumption 3.2. Assume that supk=1,··· ,N |kR1,k| = op(N
1/2) and supk=1,··· ,N |kRN−k+1,N | =

op(N
1/2).

Assumption 3.1 holds under suitable moment condition on IF(Yt;F
m) and mixing

condition on Xt; see Assumption 2.1 and Lemma 2.2 of Phillips (1987). The verifica-

tion of Assumption 3.2 is highly nontrivial and is left for future research. Let Vq(r) =∫ r

0
W1,q(s, r)W1,q(s, r)

′ds+
∫ 1

r
W2,q(s, r)W2,q(s, r)

′ds, where W1,q(s, r) = Bq(s)−(s/r)Bq(r)

for s ∈ [0, r] and W2,q(s, r) = {Bq(1)−Bq(s)}−(1−s)/(1−r){Bq(1)−Bq(r)} for s ∈ [r, 1].

The following theorem states the asymptotic null distribution of Gn.
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Theorem 3.1. Under the null hypothesis, suppose that Assumptions 3.1 and 3.2 hold. Then

the limiting null distribution for Gn is G(q) := supr∈[0,1]{Bq(r)−rBq(1)}′Vq(r)
−1{Bq(r)−

rBq(1)}.

Please insert Table 1 here!

Table 1 presents the simulated critical values for G(q) based on n = 5000 and 10000

replications for q = 1, · · · , 10. In what follows, we provide a discussion on the power of

our test. Under the alternative, there is a change point for the quantity θθθ at time k∗.

Since Yt = (Xt, · · · , Xt+m−1)
′, it is reasonable to assume that for Xt, the change point

occurs at time k∗ + m. In particular, we assume that the observations (X1, · · · , Xk∗+m−1)

come from a stationary process {X(1)
t }t∈Z, whereas the observations (Xk∗+m, · · · , Xn) come

from another stationary process {X(2)
t }t∈Z. For stationary processes X

(j)
t , j = 1, 2, we can

similarly define Y
(1)
t and Y

(2)
t . For j = 1, 2, we assume that (a) the expansion (5) holds

for the process Y
(j)
t with influence functions IF(j)(Y

(j)
t ;Fm) and remainder terms R

(j)
N1,N2

for j = 1, 2; (b) N−1/2
∑brNc

t=1 {IF(1)(Y
(1)
t ;Fm)′, IF(2)(Y

(2)
t ;Fm)′}′ ⇒ ∆̃B2q(r), where ∆̃ is

a 2q × 2q lower triangular matrix with nonnegative diagonal entries and ∆̃∆̃′ is positive

definite; (c) The remainder terms (R
(j)
1,k,R

(j)
N−k+1,N)N

k=1 satisfy Assumption 3.2 for j = 1, 2.

Then following the arguments in the proofs of Theorem 2.1 and Theorem 3.1, we can show

that Gn is consistent and it has nontrivial power against local alternatives or order N−1/2.

Remark 3.1. As mentioned above, we assume that the change of the m-th marginal dis-

tribution of Xt is due to the change in its one-dimensional marginal distribution. It was

pointed out by a referee that it seems hard to come up with a situation that some charac-

teristic of the m-dimensional distribution (m ≥ 3) is constant before the change point and

then become another constant afterward, unless the characteristic essentially depends on

the bivariate distribution. This is in fact possible as seen from the following example:

Example 3.1. Consider the following model:

Xt =





Zt, 1 ≤ t ≤ k∗

Zt + η, k∗ + 1 ≤ t ≤ n,

where Zt is a strictly stationary process with cov(Z1, Z2) 6= 0 and η 6= 0. Suppose that

m = 3 and the quantity of interest is θ = T (F3) = E[{X1−E(X1)}{X2−E(X2)}X3]. Then
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θi = E[{Xi − E(Xi)}{Xi+1 − E(Xi+1)}Xi+2]. Straightforward calculation shows that

θ1 = θ2 = · · · = θk∗−2 = E[{Z1 − E(Z1)}{Z2 − E(Z2)}Z3]

and

θk∗−1 = θk∗ = · · · = θn = E[{Z1 − E(Z1)}{Z2 − E(Z2)}Z3] + ηcov(Z1, Z2),

which suggest that there is a change point in θt at time k∗− 2. For general m ≥ 4, we can

define θ = E[{X1−E(X1)}× {Xm−1−E(Xm−1)}Xm]. By a similar argument, we can see

that there is a change point in θt at time k∗−m + 1 provided that E[{Z1−E(Z1)}× · · · ×
{Zm−1 − E(Zm−1)}] 6= 0.

Despite the above example, it is in general more natural to consider the following

alternative

θθθ1 = θθθ2 = · · · = θθθk∗ 6= θθθk∗+m = θθθk∗+m+1 = · · · = θθθN ,

which contains our abrupt change alternative Ha as a special case. It is silent about the

quantities θt, when t lies in the transition period [k∗ + 1, k∗ + m− 1]. Since m is finite, the

contribution of the observations in the transition period is asymptotically negligible and

the consistency of our test still holds.

3.1 Testing for a change point in spectrum

For a stationary time series, the spectral density function {f(λ), λ ∈ (−π, π]} or the

spectral distribution function {F (λ) =
∫ λ

0
f(w)dw, λ ∈ [0, π]} fully characterizes its second

order properties. Therefore, if the goal is to check the structural stability of second order

properties, it is natural to test for a change in spectrum, and see at which frequency band

the change occurs. Testing for a change in spectrum has been considered by Picard (1985),

Giraitis and Leipus (1992), and Lavielle and Ludena (2000). Picard (1985) developed a

Kolmogorov-Smirnov test for spectrum change under the Gaussian assumption, which was

later relaxed by Giraitis and Leipus (1992). Note that the limiting null distribution of the

test statistic of Giraitis and Leipus (1992) depends on the fourth order cumulants of the

process, and it is not clear how to implement their test in practice. Laville and Ludena

13



(2000) allowed multiple change points but assumed a parametric form for the spectral

density in each segment. Here we propose a fully nonparametric SN-based test for a change

in spectrum. This extension is made possible since the validity of the SN approach has

been extended to cover the quantity that is a functional of F∞ (i.e., the joint distribution

of (Xt)t∈Z) in Shao (2010). In particular, this includes F (λ1) and F (λ2) − F (λ1) for

0 < λ1 < λ2 ≤ π. Suppose that we want to test if there is a change in θθθ = {F (λ1), F (λ2)−
F (λ1), · · · , F (λq) − F (λq−1)} (or for each element) for any prespecified frequencies 0 <

λ1 < · · · < λq = π. Note that F (λj)− F (λj−1) =
∫ λj

λj−1
f(ω)dω measures the total spectral

power within the band [λj−1, λj]. A natural estimator for F (λ) is Fn(λ) =
∫ λ

0
In(w)dw,

where

In(w) = (2πn)−1

∣∣∣∣∣
n∑

j=1

(Xj − X̄n) exp(ijw)

∣∣∣∣∣

2

is the periodogram. For any subsample (Xt, · · · , Xt′), 1 ≤ t < t′ ≤ n, we define It,t′(w) =

{2π(t′ − t + 1)}−1|∑t′
j=t(Xj − X̄t,t′) exp(ijw)|2 and Ft,t′(λ) =

∫ λ

0
It,t′(w)dw.

Let θ̂θθt,t′ = {Ft,t′(λ1), Ft,t′(λ2)− Ft,t′(λ1), · · · , Ft,t′(λq)− Ft,t′(λq−1)} be the estimator of

θθθ on the basis of the subsample (Xt, · · · , Xt′). Further let Tn(k) := k/
√

n
(
θ̂θθ1,k − θ̂θθ1,n

)

and

Vn(k) := n−2

{
k∑

t=1

t2(θ̂θθ1,t − θ̂θθ1,k)(θ̂θθ1,t − θ̂θθ1,k)
′ +

n∑

t=k+1

(n− t + 1)2(θ̂θθt,n − θ̂θθk+1,n)(θ̂θθt,n − θ̂θθk+1,n)′
}

for k = 1, · · · , n − 1. Then our test statistic Gn = supk=1,2,...,n−1 Tn(k)′V−1
n (k)Tn(k).

Under appropriate moment and weak dependence assumptions, we expect to show that

the asymptotic null distribution of Gn is again G(q); see Theorem 3.1.

A quantity that is closely related to F (λ) is its ratio counterpart F̃ (λ) = F (λ)/F (π). If

one is only interested in the pattern of dependence described in terms of autocorrelations,

then F̃ (λ) is of more practical relevance. Suppose the interest is to test for a change

in θ̃θθ = {F̃ (λ1), F̃ (λ2) − F̃ (λ1), · · · , F̃ (λq) − F̃ (λq−1)}, then one can estimate F̃ (λ) by

Fn(λ)/Fn(π) and calculate forward and backward recursive estimates in a similar fashion.

The resulting test statistic admits the same form as Gn and its limiting null distribution

is also G(q). We shall investigate its finite sample performance in Section 4.3.
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4 Simulation studies

Through Monte Carlo simulations, we investigate the size and power properties of the

new SN-based test statistics for the mean change in Section 4.1, for the median change in

Section 4.2, and for the change in the second order property of a time series in Section 4.3.

Throughout our simulations, we use 5000 replications.

4.1 Change point in mean

In this subsection, we examine the finite sample size and power properties of our SN-based

test statistic Gn in detecting a shift in mean, and compare the results with those delivered

by KSn test statistic. Specifically, we compare the following five methods:

(i) FB: we used the Bartlett kernel for K(·) and a fixed bandwidth ln = bn1/3c in the

calculation of KSn.

(ii) DDB1: we used Andrews’ AR(1) plug-in bandwidth selection rule to choose ln in

calculating KSn. In particular, K(·) is the Bartlett kernel and l(n) = b1.1447
{

4ρ̂2n
(1−ρ̂2)2

}1/3

c,
where ρ̂ =

∑n
t=2 ûtût−1/

∑n
t=2 û2

t−1 and ût = Xt−X̄n. This data dependent bandwidth was

recommended by Andrews (1991), who showed that it minimizes the approximate mean

square error of σ̂2
n if the process ut admits an AR(1) model.

(iii) DDB2: we also tried a robust long run variance estimator, as used in Crainiceanu

and Vogelsang (2007). The idea is to estimate the break point and then use the ordinary

regression residuals obtained from the alternative one-break model to construct the long

run variance estimate. In particular, we estimated the break point by k̂, which maximizes

{
k(n− k)

n2

}1/2
∣∣∣∣∣
1

k

k∑
t=1

Xt − 1

n− k

n∑

t=k+1

Xt

∣∣∣∣∣

over k = 1, · · · , n−1. Bai (1994) obtained the consistency and the convergence rate of k̂ to

the true break point. We again used the data dependent bandwidth as in (ii) by replacing

ût by ũt, where

ũt =

{
Xt − k̂−1

∑k̂
t=1 Xt, if t = 1, · · · , k̂,

Xt − (n− k̂)−1
∑n

t=k̂+1 Xt, if t = k̂ + 1, · · · , n.

15



(iv) DDB-JX: Juhl and Xiao (2009) recently proposed to use the residuals from non-

parametric regression to calculate the long run variance estimate to alleviate the non-

monotonic power problem. Specifically, they obtained nonparametric residuals as ūt =

Xt − (nh)−1
∑n

s=1 K̃
(

t−s
nh

)
Xs, where K̃(·) is a kernel function and h is a bandwidth pa-

rameter. Following Juhl and Xiao (2009), we take K̃ to be the Epanechnikov kernel (i.e.,

K̃(x) = 3/4(1 − x2)1(|x| ≤ 1)) and h = 2n−1/5, which delivered the best results in their

simulation studies. For the calculation of long run variance estimate, we use the quadratic

spectral kernel (see eq. (2.3) of Juhl and Xiao 2009) with the corresponding data-dependent

bandwidth (see eq. (2.5) of Juhl and Xiao 2009).

(v) SN: SN-based test statistic Gn; see (4).

Consider the model

Xt = η1(t > 0.5n) + ut, t = 1, · · · , n,

where ut = ρut−1+εt with εt ∼ iid N(0, 1). To examine the size, we let η = 0, ρ = 0, 0.5, 0.8

and n = 200, 500. As seen from Table 2, the size distortion for FB and DDB2 is very large

when ρ = 0.8, which is consistent with the findings reported in Crainiceanu and Vogelsang

(2007). For DDB1, it is undersized but its size appears to be quite close to the nominal

level when ρ = 0.5, 0.8 for n = 500. The size performance for Juhl and Xiao’s method is

quite satisfactory. For the SN-based test, the size distortion corresponding to ρ = 0.8 is

noticeable when n = 200, and it improves at n = 500. Figure 2 shows the size-adjusted

power for the five methods at n = 200 and 500. As we expected, the nonmonotonic power

phenomenon occurs for DDB1; see the plots corresponding to n = 200, ρ = 0.5, 0.8 and

n = 500, ρ = 0.8. It is interesting to note that Juhl and Xiao’s method also exhibits

nonmonotonic power in the case of n = 200 and ρ = 0.8. This finding is new, and

it suggests that the use of nonparametric regression residuals in the calculation of long

run variance estimate can alleviate but not eliminate the nonmontonic power problem.

In contrast, the SN-based test always delivers monotonic power. Compared to the fixed

bandwidth scheme, which delivers the highest power among all the methods for all the

scenarios under consideration, the SN-based test is less powerful, but the power loss is

fairly moderate. Overall, the size and power performance for the SN-based test in detecting

a change point in mean is quite encouraging.
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Please insert Table 2 here!

Please insert Figure 2 here!

4.2 Change point in median

In this subsection, we investigate the size and power performance of our SN-based test Gn

in detecting a shift in median. To our knowledge, there has been little work on change point

detection for the median in the time series setup. Following the discussion on the CUSUM

process for the mean, we can similarly define a CUSUM-like process for the median, i.e.,

Tn(k) = k/
√

n(θ̂1,k − θ̂1,n), k = 1, · · · , n, where θ̂n1,n2 is the sample median based on the

observations {Xn1 , . . . , Xn2}. Under the null and appropriate weakly dependent conditions,

the weak convergence Tn(bnrc) ⇒ σmed{B(r)− rB(1)} is expected to hold, where

σ2
med = {4g2(θ)}−1

∞∑

k=−∞
cov{1− 21(X0 ≤ θ), 1− 21(Xk ≤ θ)}.

Here θ is the true median of the distribution of X1 and g(·) is the density function of

X1. To estimate σ2
med, we use the nonoverlapping subsampling method (Carlstein 1986)

for simplicity. The use of the overlapping subsampling method (Politis, Romano and

Wolf 1999) is possible but it is computationally more expensive and would not change

the results much. Let l be the subsampling width and θ̂i, i = 1, · · · , sn(l) = dn/le be

the sample median for the ith nonoverlapping subsample, where dae denotes the smallest

integer greater than or equal to a. Then the subsampling-based variance estimator of σ2
med

is defined as

σ̂2
med =

l

sn(l)

sn(l)∑
i=1


θ̂i − sn(l)−1

sn(l)∑
i=1

θ̂i




2

.

The consistency of σ̂2
med can be established under suitable weakly dependent conditions on

Xt; see Carlstein (1986). Therefore, the asymptotic null distribution of the statistic

KSn,med = sup
k=1,2,...,n−1

|Tn(k)/σ̂med|

is supr∈[0,1] |B(r)−rB(1)|. In practice, the selection of ln seems to be quite difficult and we

are not aware of any data-dependent bandwidth rule in this setting. So we tried l = cn1/3,

where c = 0.5, 1, 2, 4 and 8.
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Let ε1t, ε2t and ε3t be iid with N(0, 1), t(5) and Cauchy(0, 1) distribution respectively.

Consider the following three models:

M1 : X1t = η1{t > 0.5n}+ u1t; M2 : X2t = η1{t > 0.5n}+ u2t; X3t = η1{t > 0.5n}+ u3t,

where u1t = 0.7u1(t−1) + ε1t, u2t = 0.7u2(t−1) + 0.61/2ε2t and u3t = 0.7u3(t−1) + ε3t. The

empirical sizes for the SN-based test statistic and KSn,med are presented in Table 3 for

n = 200 and 500. For the models M1 and M2, the size distortion for the subsampling-

based test SSc (i.e., subsampling width is equal to cn1/3) at c = 0.5, 1 is very severe.

The size becomes closer to the nominal level for SS2, SS4 and SS8, where the latter two

outperform the SN-based test in size. For the model M3, the size increases as c ≥ 1 gets

larger. The test statistics SS0.5, SS1 and SS2 are undersized and the size for SS4 appears

to be the best among all the methods. The opposite patterns corresponding to the models

M1, M2 and M3 suggest that the optimal subsampling size could very much depend on

the moment property of the underlying process. For the SN-based test, it is oversized and

the size distortion diminishes as sample size increases. Compared with the models M1 and

M2, the model M3 corresponds to slightly more size distortion for the SN-based test, but

the difference is not as drastic as the subsampling-based test.

Please insert Table 3 here!

Figure 3 examines the size-corrected power for the models M1 and M2 with η ∈ [0, 6],

and for the model M3 with η ∈ [0, 30]. When n = 200, for the models M1 and M2, the

power for SS0.5 is the highest, and the SN-based test has a modest power loss. By contrast,

SS4 and SS8, which deliver accurate size, have a severe power loss. For the model M3,

it is interesting to observe that the SN-based test outperforms all the other methods in

power when η ∈ [5, 30], which suggests that the SN-based test is robust to the heavy tail

innovations in the data generating process. When n = 500, the power for SS4 appreciates

a lot but SS8 is still substantially inferior to other tests in power; other patterns are

qualitatively similar to the case n = 200. Overall, the SN-based test has monotonic power

and reasonable size and power performance in testing for a change point in median.

Please insert Figure 3 here!
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4.3 Change point in the second order property

In this subsection, we examine the size and power for tests that detect a change in the

second order property of a time series. Consider the AR(1) model with a shift in the AR(1)

coefficient:

Xt =

{
ρ1Xt−1 + εt, 1 ≤ t ≤ n/2,

ρ2Xt−1 + εt, n/2 + 1 ≤ t ≤ n,

where εt ∼ iid N(0, 1). Under the null, ρ1 = ρ2 = 0, 0.5, 0.8. Under the alternatives,

(ρ1, ρ2) = (0, 0.5), (0.5, 0.8) and (0, 0.8). We apply three types of test statistics: (a) test

statistic that aims to detect a change in ρ(1); (b) test statistic that targets a change in

F (π/2); (c) test statistic that detects a change in F (π/2)/F (π). Note that under the

alternatives, there is a change in all three quantities. Table 4 shows the empirical sizes

for the SN-based test and the traditional Kolmogorov-Smirnov test, where the asymptotic

variance is consistently estimated by the nonoverlapping subsampling method. For all three

quantities, the subsampling-based test has a noticeable size distortion for all ρ1 = ρ2 and

both sample sizes. The general pattern is that the size can decrease all the way from c = 1

to c = 8, or it can decrease as c gets larger and then increase after it reaches the lowest

value. The size for the SN-based test is quite satisfactory, especially for ρ1 = ρ2 = 0, 0.5.

When ρ1 = ρ2 = 0.8, the size distortion is apparent at n = 200, but it improves at a

larger sample size n = 500. Table 5 presents the size-corrected power for the three types of

tests. As seen from the power for the SN-based test, the test for a change in ρ(1) (F (π/2))

is most (least) powerful among the three. A comparison of the SN-based test and the

subsampling-based test again suggests that there is a loss of power associated with the

SN-based test. It is also worth noting that the subsampling width that yields the highest

power corresponds to the largest size distortion. In other words, there is a tradeoff between

size distortion and power loss. The SN-based test delivers better size but less power, a

finding that has also been reported in other testing contexts; see Lobato (2001) and Shao

(2010) for more discussions.

Please insert Table 4 here!

Please insert Table 5 here!
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5 Empirical Illustrations

Please insert Figure 4 here!

In this section, we apply our new tests to two real data sets. We first consider the GNP

(Gross National Product) data set, as analyzed in Shumway and Stoffer (2006), page 144.

The data are U.S. quarterly U.S. GNP in billions of chained 1996 dollars from 1947(1) to

2002(3) and they have been seasonally adjusted. Following Shumway and Stoffer (2006),

we look at the difference of the logarithm of the GNP, which is naturally interpreted as

the growth rate of GNP. Although it was stated in Shumway and Stoffer (2006) that

“the growth rate appears to be a stable process”, Figure 4 shows that there might be

a structural break in the variability of the data, with less variability for the data after

year 1985. Applying our SN-based test to test for a possible change in the marginal

variance, 75% quantile and 25% quantile, respectively, we tabulate the values of our test

statistics and their corresponding p-values in Table 6. The test results suggest that there

is a change point in the 75% quantile of the series, and thus provide significant evidence

against the hypothesis that the series is (strictly) stationary. In Shumway and Stoffer

(2006), stationary time series models, such as AR(1) and MA(2), have been used to fit the

data. Although both model fits pass the diagnostic checking tests, our results indicate that

it might be beneficial to consider a one change point model. Further modeling is beyond

the scope of this paper.

Please insert Table 6 here!

Please insert Figure 5 here!

Second, we apply our test to detect a change in the mean of Argentina rainfall data, as

used in Wu, Woodroofe and Mentz (2001); see Figure 5. The rainfall data contains yearly

rainfall in millimeters in Argentina from 1884 to 1996. The latter authors proposed a test

statistic based on isotonic regression. Note that a consistent long run variance estimate

is involved in their procedure and the choice of the truncation lag was based on a visual

inspection of the autocorrelation plot of the residuals. Here we apply the SN-based test to

test for a change point in mean and our test statistic takes the value 30.5, corresponding

to a p-value of about 0.1. Thus it provides some evidence against the constant mean

hypothesis, although not significant at the usual 5% significance level. As mentioned in
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Wu et al. (2001), the data provider believes that there is a change in the mean, which

corresponds to the construction of a dam during 1952-1962. If one has prior beliefs about

possible location of the change point, then we can incorporate the beliefs into our SN-based

CUSUM test to enhance the power. Specifically, we define

Gn(τ1, τ2) = sup
k=bτ1nc,··· ,bτ2nc

Tn(k)′V −1
n (k)Tn(k), where 0 ≤ τ1 < τ2 ≤ 1

and the limiting null distribution for Gn(τ1, τ2) is

G(1; τ1, τ2) = sup
r∈[τ1,τ2]

{B(r)− rB(1)}′V −1(r){B(r)− rB(1)}.

We choose (τ1, τ2) = (0.6, 0.7) as this corresponds to the period 1952-1962. The critical

values for G(1; τ1, τ2) are tabulated in Table 7. In this case, the p-value is in the range

(0.025, 0.05), thus we reject the constant mean hypothesis at the 5% significance level. Our

conclusion is consistent with that reached in Wu et al. (2001).

Please insert Table 7 here!

In addition, we also apply the SN-based test to see if there is a change in median. It

turns out that our test statistic takes value 155.4 and the p-value is smaller than 0.001,

thus providing strong evidence for a change in the marginal median. The finding is quite

interesting as median and mean are both location parameters. Since the test statistic

for a change in mean may be susceptible to outliers in the data, the test for a change in

median could be used as a useful alternative for the change of the center of the marginal

distribution.

6 Conclusions

In this article, we propose a new class of test statistics to test for a change point in time

series. The appealing features of our SN-based test can be summarized as follows: (a) The

test statistic does not involve any user-chosen number or smoothing parameter, and the

asymptotic null distribution is nuisance parameter free. (b) The implementation is rather

straightforward as the test statistic involves only forward and backward recursive estimates.

Approximate upper critical values for the limiting null distribution G(q), q = 1, · · · , 10 are
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provided in Table 1 by means of simulations. The SN-based test has wide applicability

because it can be used to test for a change point in the marginal mean, marginal quantile,

autocorrelation at certain lags, and second order spectrum etc. Additionally, we are able

to treat the change point detection problem in the above-mentioned quantities in a unified

fashion. This feature brings convenience to the user, who intends to check the stability

of their data from various aspects. (c) The finite sample performance is encouraging.

Compared to the existing approaches, the SN-based test has better size but less power,

which is consistent with early findings by Lobato (2001) and Shao (2010) in other contexts.

The power loss is moderate and the power is monotonic as demonstrated in simulation

studies. On the basis of the above nice characteristics, our test can be recommended to

practitioners as a useful inference tool for routine use.

In summary, our SN-based test provides a unified treatment and a new perspective to

the large literature of change point detection in time series. The treatment here is restricted

to univariate time series, and we expect that an extension to multivariate setting is possible;

see Aue, Hörmann, Horváth and Reimherr (2009) for a recent work. Furthermore, we

anticipate that the SN-based change point test can be extended to test for a change point in

the parameter vector of a time series regression model or regression model with dependent

errors. Further research along these directions are well underway.

7 Appendix

Proof of Theorem 2.1: Note that

k(n− k)

n2

{
k−1

k∑
t=1

Xt − (n− k)−1

n∑

t=k+1

Xt

}
=

1

n

(
k∑

t=1

Xt − k

n

n∑
t=1

Xt

)
.

So Tn(k) = k(n−k)

n3/2

{
k−1

∑k
t=1 Xt − (n− k)−1

∑n
t=k+1 Xt

}
. Under the alternative, we have

Tn(k∗) =
k∗(n− k∗)

n3/2

{
(k∗)−1

k∗∑
t=1

{Xt − E(Xt)} − (n− k∗)−1

n∑

t=k∗+1

{Xt − E(Xt)} −∆n

}
.

22



On the other hand, it is not hard to see that Vn(k∗) →D V (λ). Therefore, if ∆n is a

non-zero fixed constant, we have that

Gn ≥ Tn(k∗)′Vn(k∗)−1Tn(k∗) →∞ in probability.

When ∆n = n−1/2L, we have Gn ≥ Tn(k∗)′Vn(k∗)−1Tn(k∗), which converges in distribution

to

{−Lλ(1− λ) + B(λ)− λB(1)}′V (λ)−1{−Lλ(1− λ) + B(λ)− λB(1)}.
So as |L| → ∞, the above limit diverges to ∞. The conclusion follows. ♦
Proof of Theorem 3.1: With (5), we can derive that for t = 1, · · · , k,

t(θ̂θθ1,t − θ̂θθ1,k) =

{
t∑

j=1

IF(Yj;F
m)− (t/k)

k∑
j=1

IF(Yj;F
m)

}
+

{
tR1,t − t

k
kR1,k

}
(6)

and for t = k + 1, · · · , N ,

(N − t + 1)(θ̂θθt,N − θ̂θθk+1,N) =

{
N∑

j=t

IF(Yj;F
m)− (N − t + 1)

(N − k)

N∑

j=k+1

IF(Yj;F
m)

}

+

{
(N − t + 1)Rt,N − (N − t + 1)

(N − k)
(N − k)Rk+1,N

}
.(7)

Under Assumption 3.2, we can show that the terms in the second curly brackets of the

equations (6) and (7) are uniformly negligible, which, along with Assumption 3.1, implies

the joint convergence of Tn(brNc) ⇒ ∆{Bq(r) − rBq(1)} and Vn(brNc) ⇒ ∆Vq(r)∆
′.

Then the conclusion is a direct consequence of the continuous mapping theorem.
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Table 1: Simulated critical values for G(q), q = 1, · · · , 10 based on n = 5000 and 10000

replications.

α%/q 1 2 3 4 5 6 7 8 9 10

90% 29.6 56.5 81.5 114.7 150.0 183.8 223.5 267.1 308.5 360.0

95% 40.1 73.7 103.6 141.5 182.7 218.8 267.3 317.9 360.7 420.5

97.5% 52.2 92.2 128.9 171.9 218.7 255.0 313.4 367.9 416.3 483.0

99% 68.6 117.7 160.0 209.7 265.8 318.3 368.0 432.5 483.6 567.2

99.5% 84.6 135.3 182.9 246.6 291.7 367.7 410.5 498.1 544.9 621.6

99.9% 121.9 192.5 246.8 319.2 358.1 464.9 530.6 614.1 649.0 751.1

Table 2: Empirical sizes (in percentage) for the five methods used in testing for a change

in mean. Nominal level is 5%. The largest standard error is 0.59%.

n ρ FB DDB1 DDB2 DDB-JX SN

200 0 3.5 2.5 4.1 4.2 4.9

0.5 6.9 4.9 12.8 6.0 6.1

0.8 20.2 2.4 22.8 5.8 8.6

500 0 3.6 2.7 3.4 4.1 5.2

0.5 6.2 4.7 8.8 5.1 5.3

0.8 18.4 4.5 14.1 6.0 6.5

0 1 2 3 4 5 6

0
1

2
3

4

magnitude of change

Reje
ction
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cent

age

Figure 1: The empirical rejection percentage of the naive SN-based test K̃Sn under the

alternative model (3).
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Table 3: Empirical sizes (in percentage) for the SN-based test statistic and KSn,med in

testing for a change in median. In the table, SN denotes the SN-based test and SSc stands

for the size of the subsampling-based test statistic with the subsampling width being cn1/3.

The largest standard error is 0.71%.

n Model α% SN SS0.5 SS1 SS2 SS4 SS8

200 M1 10% 14.8 69.9 34.1 16.2 12.3 11.9

5% 9.0 59.4 22.9 9.1 6.4 7.0

M2 10% 14.9 65.4 29.7 15.8 12.6 11.9

5% 9.6 52.6 19.9 8.9 6.2 7.2

M3 10% 15.7 4.1 1.4 3.7 11.4 18.9

5% 10.5 2.2 0.7 2.0 8.0 13.9

500 M1 10% 12.9 56.7 27.4 15.4 9.3 12.0

5% 7.4 43.1 17.9 8.4 5.2 5.9

M2 10% 12.5 48.8 23.6 14.4 8.9 12.8

5% 7.5 35.9 15.0 7.4 4.2 6.8

M3 10% 13.9 0.2 0.3 2.1 6.2 14.9

5% 8.7 0.0 0.2 1.4 4.3 10.0

29



Table 4: Empirical sizes (in percentage) for the SN-based test statistics and the

subsampling-based test statistics in testing for a change point in (a) ρ(1), (b) F (π/2)

and (c) F (π/2)/F (π). In the table, SN stands for the SN-based test and SSc denotes the

subsampling-based method with the subsampling window width being cn1/3. The largest

standard error is 0.71%.

n ρ1 = ρ2 α% SN SS1 SS2 SS4 SS8

200 0 10% (a) 11.3 44.3 16.7 13.6 12.9

5% (a) 6.4 33.0 8.8 7.2 8.1

0.5 10% (a) 11.7 38.7 9.8 19.4 19.4

5% (a) 6.9 29.0 5.9 12.4 13.9

0.8 10% (a) 15.1 39.3 8.2 28.3 28.1

5% (a) 9.6 30.0 4.7 21.5 21.7

500 0 10% (a) 10.6 30.6 15.0 8.4 12.2

5% (a) 6.0 19.8 8.5 4.1 5.8

0.5 10% (a) 11.9 20.4 11.3 4.5 16.3

5% (a) 6.7 13.2 6.8 2.3 9.3

0.8 10% (a) 13.5 13.9 8.5 2.0 26.6

5% (a) 8.3 8.8 5.0 0.9 18.3

200 0 10% (b) 9.6 43.7 18.2 13.2 10.9

5% (b) 5.1 32.2 10.0 7.0 6.4

0.5 10% (b) 10.1 82.9 35.2 18.6 13.0

5% (b) 5.4 75.2 25.2 11.9 8.4

0.8 10% (b) 13.6 99.7 81.5 45.1 22.4

5% (b) 8.3 99.4 74.1 36.3 17.2

500 0 10% (b) 10.3 30.8 15.1 7.9 12.4

5% (b) 5.2 20.2 8.4 2.9 5.2

0.5 10% (b) 10.0 66.2 28.2 10.6 13.1

5% (b) 5.0 53.6 18.1 5.4 6.9

0.8 10% (b) 10.7 99.4 75.5 33.6 21.6

5% (b) 6.1 98.8 66.6 24.0 13.2

200 0 10% (c) 11.4 42.0 16.5 13.8 12.6

5% (c) 6.3 29.8 9.6 7.7 7.8

0.5 10% (c) 11.6 19.7 5.6 16.6 19.7

5% (c) 6.9 13.1 2.8 11.3 13.9

0.8 10% (c) 16.4 9.1 1.5 25.4 32.1

5% (c) 10.1 4.9 0.6 18.7 26.5

500 0 10% (c) 11.5 29.2 15.8 9.0 12.2

5% (c) 6.2 19.1 8.5 4.1 5.9

0.5 10% (c) 11.8 8.1 6.2 4.1 15.6

5% (c) 7.0 4.4 3.4 2.2 9.0

0.8 10% (c) 15.5 1.4 2.6 1.7 28.5

5% (c) 9.4 0.7 1.3 0.9 20.5
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Table 5: Size-corrected power (in percentage) for the SN-based test statistics and the

subsampling-based test statistics in testing for a change point in (a) ρ(1), (b) F (π/2)

and (c) F (π/2)/F (π). In the table, SN stands for the SN-based test and SSc denotes

the subsampling-based method with the subsampling window width being cn1/3. Nominal

level is 5%. The largest standard error is 0.71%.

n (ρ1, ρ2) SN SS1 SS2 SS4 SS8

(a) 78.4 91.9 87.0 74.7 10.1

(0, 0.5) (b) 40.6 73.8 60.4 34.2 7.9

(c) 73.2 80.6 74.8 63.1 11.0

(a) 57.7 69.3 66.0 61.3 22.3

200 (0.5, 0.8) (b) 32.2 78.2 68.5 45.1 19.8

(c) 51.6 47.2 47.1 47.0 23.0

(a) 99.0 100 100 99.7 63.6

(0, 0.8) (b) 60.3 99.8 98.2 76.6 22.4

(c) 98.7 99.8 99.6 98.8 61.7

(a) 98.5 100 99.9 99.1 84.5

(0, 0.5) (b) 74.6 97.2 93.7 86.9 27.7

(c) 96.8 99.5 99.5 98.1 76.5

(a) 91.8 97.9 97.3 90.1 84.1

500 (0.5, 0.8) (b) 61.0 97.5 94.1 86.5 36.5

(c) 87.6 90.5 91.4 75.8 76.2

(a) 100 100 100 100 100

(0, 0.8) (b) 86.0 100 100 99.6 55.3

(c) 100 100 100 100 100
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Table 6: Test statistics and their p-values for quarterly U.S. GNP data

Parameter variance 75% quantile 25% quantile (25% quantile,75% quantile)

Test statistic 28.7 248.1 14.5 322.4

Range of p-value (0.1,1) (0,0.001) (0.1,1) (0,0.001)

Table 7: Simulated critical values of G(1; τ1, τ2) for (τ1, τ2) = (0.6, 0.7) based on n = 5000

and 10000 replications.

α% 90% 95% 97.5% 99% 99.5% 99.9%

Critical Values 16.2 23.7 32.2 45.1 55.9 84.2
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Figure 2: Size-adjusted power curve for the five methods used in detecting a change point

in mean for the AR(1) models with ρ = 0, 0.5, 0.8. Sample size n = 200 (left panel) and

500 (right panel).
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Figure 3: Size-adjusted power curve in detecting a change point in median for the models

M1, M2 and M3. Here SN denotes the SN-based method and SSc denotes the subsampling

method with the subsampling width being cn1/3. Sample size n = 200 (left panel) and 500

(right panel).
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U.S. GNP quarterly growth rate
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Figure 4: Quarterly U.S. GNP growth rate from 1947(1) to 2002(3)
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Figure 5: Argentina rainfall data: yearly rainfall (milimeters) in Argentina from 1884 to

1996
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