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Abstract. The traditional use of model selection methods in practice is to
proceed as if the final selected model had been chosen in advance, without ac-
knowledging the additional uncertainty introduced by model selection. This often
means underreporting of variability and too optimistic confidence intervals. We
build a general large-sample likelihood apparatus in which limiting distributions
and risk properties of estimators-post-selection as well as of model average esti-
mators are precisely described, also explicitly taking modelling bias into account.
This allows a drastic reduction of complexity, as competing model averaging
schemes may be developed, discussed and compared inside a statistical prototype
experiment where only a few crucial quantities matter. In particular we offer a
frequentist view on Bayesian model averaging methods and give a link to gener-
alised ridge estimators. Our work also leads to new model selection criteria. The
methods are illustrated with real data applications.
Key words: bias and variance balance, growing models, likelihood inference,
model average estimators, model information criteria, moderate misspecification

1. Introduction and summary

An impressive range of model selection criteria has been developed and finessed over the
past three decades. These have been constructed from different sets of intentions and
have been aimed partly at general parametric models while others have been geared to-
wards special types of statistical models, like time series, neural networks or hazard rate
regression; some are inspired by Bayesian considerations while others are more traditional
frequentistic; some have arisen via asymptotics and optimality properties for large samples
while others have been more fine-tuned for moderate sample sizes; etc. A fair list of these
model choice schemes have also successfully made the passage from university blackboards
to statistical software packages and the mainstream of applied statistical research. Meth-
ods like the AIC and the BIC (the Akaike and the Bayesian information criteria), with
suitable modifications, along with various stepwise methods for subset selection in regres-
sion models, are applied routinely also by non-specialists. For overviews of model selection
literature one may consult the monograph Burnham and Anderson (2002) and the intro-
ductory sections of Spiegelhalter, Best, Carlin and van der Linde (2002) and Claeskens
and Hjort (2003).

1.1. Estimator-post-selection problems. It is fair to say, however, that far less work
has been carried out, and even less has reached mainstream statistical applications, regard-
ing the many complementary questions related to the consequences of model selection. In
statistical practice, one typically applies some off-the-shelf model selection scheme, per-
haps supplemented with brief goodness-of-fit checking of residuals, to arrive at some ‘good
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model’ that is thought to adequately reflect the main aspects of data – after which one
proceeds with one’s analysis as if this good model had been decided on in advance. It is
clear that such analysis ‘hides (or ignores) some uncertainty’; reported confidence intervals
tend to be too short, an hypothesis rejected at an announced 5% significance level might
actually have been tested at a rather higher level, and so on. A central issue is that esti-
mators formed after model selection really are like mixtures of many potential estimators,
namely those that would have been computed had the random model selectors landed dif-
ferently. A second theme is that it is sometimes advantageous to smooth estimators across
several models, rather than sticking to only the model that is being reached by a single
selection criterion.

There are at least two clear reasons why fewer efforts have been devoted to these
questions than to the primary ones related to finding ‘one good model’. The first is that
the selection strategies actually used by statisticians are difficult to describe accurately,
as they involve many and partly non-formalised ingredients like ‘looking at residuals’ and
‘trying a suitable transformation’. The second is that these questions of estimator-post-
selection behaviour simply are harder to formalise and analyse.

An honourable exception is that of ‘Bayesian model averaging’ (BMA), where more
than a hundred papers have been published over the past decade. If a Bayesian can put
down prior probabilities for a list of potential models, along with priors for the parameters
of each model, then the Bayesian machinery is in principle capable of delivering the poste-
rior distribution of any interest parameter (provided it retains a precise interpretation and
is well defined across the models under study). The tutorial by Hoeting, Madigan, Raftery
and Volinsky (1999) discusses pertinent issues of interpretation and implementation via
the machinery of Markov chain Monte Carlo, where the chains in question move between
models of different dimensions; see also Green (2003) for a review of trans-dimensional
McMC theory. With BMA methodology, the extra estimator variability stemming from
not knowing the correct model a priori is adequately taken into account.

The approach remains problematic, however. First of all there are difficulties asso-
ciated with the often ad hoc way in which the prior probabilities for a (sometimes long)
list of models is set up; see the discussion to Hoeting et al. (1999). Secondly, we raise
concern for the fact that the typical application of BMA involves mixing together many
conflicting prior opinions regarding interest parameters. If µ is some parameter of interest,
and µ = µ(αj) in terms of the parameters αj of candidate model j, with prior πj(αj), this
leads to a prior π̄j(µ), say; why would a statistician entertain many different such inside
the same problem formulation, and what are the consequences in cases where some of
these have clear clashes? Finally, even though BMA ‘works’, insofar as adequate analysis
of data can be carried out after judicious selection of models, prior probabilities for these,
and prior densities for parameters in each model, rather little appears to be known about
the actual performance or behaviour of the consequent inferences, like estimator precision.

The present article aims at establishing a framework where properties of estimator-
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post-selection and estimator average methods can be accurately described. Our framework
is general and unified, and involves large-sample likelihood approximations across a list
of parametric models. The end result is a machinery for ‘frequentist model averaging’
(FMA), to be partly contrasted with that of BMA. Within this context many natural
model averaging strategies can be developed and compared. Our results also shed light on
the behaviour of BMA schemes, in fact by leading to precise large-sample results about
their behaviour.

1.2. An illustration: averages over logistic regressions. To illustrate and pinpoint some
of the problems associated with model selection and model averaging, consider the following
example. The data set studied is taken from Appendix I in Hosmer and Lemeshow (1989),
and concerns factors that may influence the birth weight of babies, in particular, the event
that the baby weighs less than 2500 gram. Covariate information for the n = 189 mothers
in question included weight just prior to pregnancy (x2, in pounds), age (x3), as well as
indicators for race ‘black’ (x4) and race ‘other’ (x5); mothers with x4 = 0 and x5 = 0 are
of race ‘white’. For the purposes of this article we make the assumption that

p(x, u) = Pr{low birth weight |x, u} =
exp(xtβ + utγ)

1 + exp(xtβ + utγ)
,

where x = (1, x2)t is always to be included in the logistic regression, while subsets of
u = (x3, x4, x5)t may or may not enter the equation. See also Claeskens and Hjort (2003).

model −AIC −BIC white SE black SE ratio SE
0 232.691 239.174∗ 0.298 0.035 0.256 0.040 0.861 0.060
3 233.123 242.849 0.288 0.035 0.272 0.043 0.945 0.094
4 231.075∗ 240.800 0.269 0.037 0.412 0.101 1.533 0.423
5 234.101 243.826 0.279 0.041 0.242 0.043 0.868 0.062
34 232.175 249.068 0.264 0.037 0.413 0.101 1.564 0.435
35 234.677 247.644 0.272 0.041 0.259 0.046 0.950 0.097
45 231.259 244.226 0.231 0.044 0.414 0.100 1.794 0.547
345 232.661 248.869 0.230 0.044 0.414 0.100 1.801 0.551

Table 1.1. For submodels corresponding to inclusion or not of the covariates
x3, x4, x5, the table lists minus AIC, minus BIC, and then estimates along with
estimated standard deviations (computed under the model assumption in ques-
tion). These are the low birth weight probabilities p(white), p(black) and the
ratio p(black)/p(white).

It is convenient to label the eight potential submodels ‘0’, ‘3’, ‘4’, ‘5’, ‘34’, ‘35’, ‘45’,
‘345’, corresponding to inclusion or exclusion of these three extra covariates. We shall
take an interest in estimating three parameters, the probability of low birth weight for
the average ‘white’ and ‘black’ mothers, and for the ratio of these two. Table 1.1 gives
estimates along with associated standard errors for these three estimands, for each of the
eight possible models. The table also includes minus AIC and minus BIC, where AIC is
twice the maximised log-likelihood minus say 2k, where k is the number of parameters in
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the model, while BIC is twice the maximised log-likelihood minus k logn. We see that
the AIC selects ‘4’ ahead of ‘45’, while the BIC prefers the narrow model ‘0’ ahead of ‘4’.
See also Claeskens and Hjort (2003) for further analysis of these data using the focussed
information criterion (FIC), which finds the best model for given interest parameter.

The estimated standard deviations given here have been computed via familiar delta
method algebra and approximate normality of the maximum likelihood estimators, and
under the typical assumption that the model under consideration is adequate. While the
sampling variance perhaps may be adequately estimated here (conditional on the model),
there is potential modelling bias, not reflected in the table and not easy to assess. Our
article will develop methods that in particular make it possible to answer the following
questions:

(i) If a statistician uses the estimators dictated by the AIC (here, 0.269, 0.412, 1.533
for the three parameters), what are the real variances of these, and what are the biases
stemming from the modelling imperfections of the selected logistic equation? How trust-
worthy are the confidence intervals delivered by standard use?

(ii) Similarly, if another statistician uses BIC to decide on estimators (here, 0.298,
0.256, 0.861), how big might the modelling biases be, and what are the real variances
involved?

(iii) Are there advantages to taking suitable averages across models, for example
weighted averages over those with best AIC, BIC or FIC scores? What are then the
biases and variances involved? How can adequate confidence intervals be constructed?

(iv) When will the simple ‘narrow method’, which here corresponds to disregarding
the extra covariates, be more accurate than the ‘full model method’, which includes all
five logistic parameters in the inference?

(v) Could it be advantageous here to trust covariate x2 fully (along with x1 = 1),
but to trust the influence of x3, x4, x5 less, in the sense of shrinking estimated logistic
coefficients for these three towards zero?

(vi) If a BMA regime is used here, what is its (frequentist) behaviour, and how do
different BMA schemes compare in performance?

(vii) Are there FMA schemes with suitable optimality properties?

1.3. Related work. As mentioned above, the Bayesian literature so far decidedly
outgoliaths its frequentist counterpart concerning model averaging inference and estimator-
post-selection performance. Some work in the frequentist directions has however been done
over the last decade.

Hurvich and Tsai (1990) pointed out that for linear regression models, coverage rates
of confidence intervals for regression parameters, conditional on the selected model, are
much smaller than the nominal coverage rates. Such problems have been further addressed
by Chatfield (1995) and Draper (1995). Also in a linear regression setting, in the presence
of a finite-dimensional nuisance parameter, Kabaila (1995, 1998) considered the effect of
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model selection on the construction of confidence intervals as well as on prediction intervals.
Pötscher (1991) considered a sequence of nested models, containing an increasing number
of parameters θ1, . . . , θq and possibly a nuisance parameter η, in which a backward model
selection is performed. He makes the assumption that there is a true model containing
parameters (η, θ1, . . . , θq0), where 1 ≤ q0 ≤ q. Leeb and Pötscher (2000) further build on
this subject and obtain distributions of post-model selection estimators under the condition
of possibly selecting an incorrect model with fewer than q0 parameters. Their methods
are restricted to linear regression models Y = Xθ + ε with independent and identically
distributed Gaußian error terms, and for a similar backward selection procedure, employing
a t-test at each stage of the selection procedure. Also in linear models, Sen and Saleh (1987)
study the asymptotic distribution after a preliminary test for the presence of part of the
regression coefficients, hence dealing with two possible models for the data. Bühlmann
(1999) investigates local consistency of post-model selection estimators under a set of
conditions which imply all ‘local’ models to have the same dimension asymptotically.

A few non-Bayesian methods for model averaging have been proposed in the literature.
There is of course a large literature on model selection methods, which can be considered
as hard-threshold averages; see Claeskens and Hjort (2003). George (1986a, 1986b) in-
vestigated multiple-shrinkage estimators in the normal model. Also, Foster and George
(1994) explicitly analysed performance of estimators-post-selection, in a normal regression
context. Rao and Tibshirani (1997) constructed an out-of-bootstrap method which leaves
out one training point and constructs bootstrap model weights depending on how well the
remaining bootstrap data predict the left out value. They did not provide any asymptotic
distribution theory for the model averaging estimator. The adaptive regression by mixing
of Yang (2001) splits the data set into two parts, where one part is used for estimation
and the other for measuring the quality of predictions, on basis of which model weights
are constructed. Buckland, Burnham and Augustin (1997) constructed model averaging
weights based on the values of the AIC or BIC scores, further discussed in Burnham and
Anderson (2002, Ch. 6). This may accordingly be seen as suggestions for problem (iii) de-
scribed at the end of Section 1.2 above. The construction of Buckland et al. is somewhat
ad hoc, however, and they do not really analyse the performance of the resulting estimator.
The results of Section 4 below can be used to accurately describe its behaviour, and also
answer other questions raised in their paper.

1.4. The present article. In Section 2 we build and discuss a general model selection
framework, involving a finite number of parametric extensions around a given parametric
basis model. This includes problems of subset selection in general regression models, and,
with further amendments, also situations with memory order and averaging order for time
series and Markov chain models. Section 3 develops the necessary theory of maximum
likelihood estimators inside such a framework, where modelling bias is explicitly present
and taken into account for each candidate estimator. Some attention is given to behaviour

5



of the AIC criterion. In Section 4 we describe a fairly general class of model average
estimators, which compromise across a set of candidate models, and derive their limit dis-
tributions. These are not normal, but rather non-linear mixtures of normals. This is in
particular true for estimator-after-selection schemes. We also pinpoint how the confidence
level of confidence intervals becomes lower than the ‘intended level’ when the model se-
lection step is being ignored. Various natural FMA strategies are proposed in Section 5,
including Bayesian and empirical Bayesian variants. Then we illustrate our FMA machin-
ery for some applications in Section 6. Section 7 extends the class of compromise estimators
further, allowing ‘generalised ridging’, where estimates of potential extensions of a given
model are being shrunk in a controlled fashion. This may often lead to smaller variances
without significantly increased sizes of modelling bias. Then we turn to a frequentist view
of BMA methods in Section 8. Apparently, despite a flurry of BMA activity over the
last decade, performance of BMA schemes has not been studied in the classical sense of
limiting distributions and large-sample approximations to risks; we do so here. In Section
9 we give some brief analysis of risk behaviour and comparisons, applying and illustrating
theoretical results of previous sections. Our article ends with a list of concluding remarks
in Section 10, some pointing to further research. All proofs are placed in Section 11.

2. A model averaging framework

This section establishes a fruitful general framework for model choice and model average
estimators. The motivation is to start with a ‘narrow’ model, perhaps of standard type,
and then add on one or more additional parameters to be able to reflect further features
of the data generating mechanisms at work. This section partly parallels Section 2 of
Claeskens and Hjort (2003), which focusses on model selection, whereas we here also are
concerned with model averaging.

2.1. Models with i.i.d. data. Suppose independent data Y1, . . . , Yn come from density
f . Inference is sought for a certain parameter estimand µ = µ(f). We start with a
basic narrow model, of the type f(y, θ) with a p-vector of parameters θ. The extended
models take the form f(y, θ, γ) with an additional q-vector of γ-parameters, where γ = γ0

corresponds to the narrow model in the sense that f(y, θ) = f(y, θ, γ0). Thus γ0 is fixed
and known. Here one may consider employing suitable submodels, corresponding to having
some of the γj parameters equal to γj,0 while others are not. Using a bigger model would
typically mean less modelling bias but increased estimation variance, and vice versa. At
the outset there are 2q such submodels to consider, one for each subset S of {1, . . . , q}.

In this framework there is a variety of estimators to consider, from µ̂full = µ(θ̂full, γ̂full)
using maximum likelihood estimators in the widest model where S = {1, . . . , q} to the
simpler µ̂narr = µ(θ̂narr, γ0) which employs maximum likelihood estimation in the narrow
model where S = ∅. The general submodel estimator is

µ̂S = µ(θ̂S , γ̂S , γ0,Sc), where S ⊂ {1, . . . , q}, (2.1)
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found via maximum likelihood in the model that includes exactly the γj parameters for
j ∈ S while keeping the others at γ0,j (Sc is the complement of S). The narrow model
corresponds to S being the empty set. Further special cases would be the nested ones
corresponding to S = {1, . . . , k} for k = 1, . . . , q.

Our intention is to investigate what happens to all the µ̂S estimators, and importantly
also averaged versions of these, in the local misspecification framework

ftrue(y) = fn(y) = f(y, θ0, γ0 + δ/
√
n). (2.2)

The δ1, . . . , δq parameters signify the degrees of the model departures in directions 1, . . . , q,
with due influence on the estimand µtrue = µ(θ0, γ0 + δ/

√
n). Later on we give results for

the limiting risk of estimators
∑

S c(S)µ̂S , with random weights summing to one. We
assume that µ(θ, γ) is smooth in a neighbourhood of (θ0, γ0). The aim is to understand
and assess large-sample approximations to distributions and say mean squared errors of
subset and model average estimators, in situations where data come from f(y, θ, γ) with
γ not too far from γ0, and it is for this reason that we work under the (2.2) scenario.
The O(1/

√
n) framework chosen here is canonical in the sense that it leads to the most

fruitful large-sample approximations, with squared model biases and estimator variances
as exchangeable currencies, both of size O(1/n).

Our framework amounts to studying perturbations around a given narrow model in
certain directions, expressed in (2.2) by letting γ vary around γ0, and various consequences,
for different estimators, are highlighted and discussed in the following sections. One may
wonder whether yet further consequences of importance would emerge if we in addition
perturb the θ part of the model around the null value θ0. It turns out that there is no
additional gain in considering such scenarios, as judged by what is to be learned from
large-sample approximations of estimators and their performances; see Remark 4.1.

2.2. Subset selection and mixtures of regression models. With some efforts, the
framework above may be generalised to encompass regression situations. Suppose Yi for
given covariate vectors xi = (xi,1, . . . , xi,p)t are independent, with density of the type

fi,true(y |xi) = f(y |xi, β0, σ0, γ0 + δ/
√
n),

most often with a p-dimensional β parameter, a scale parameter σ, and up to q further
parameters γ. These ‘extra’ parameters could be associated with interactions among the
xi,j covariates or with other regressors. They could also help describe aspects of the
variance structure, like a parametric model for the conditional variance in linear regression.
It is again required that γ = γ0 leads back to the narrow model with only β and σ present.
Focus parameters of interest take the form µ = µ(β, σ, γ), which here corresponds to
µtrue = µ(β0, σ0, γ0 + δ/

√
n). This could be the median regression surface or the standard

deviation function evaluated at a point x0, a quotient between two regression coefficients
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or between two values of the mean regression function, and so on. In this framework
we may consider submodel estimators (β̂S , σ̂S , γ̂S) via maximum likelihood in the model
that employs γjs for j ∈ S. This leads to the estimator µ̂S = µ(β̂S , σ̂S , γ̂S) for the focus
parameter. In Section 4 we give results for limiting risks of model average estimators∑

S c(S)µ̂S .
The type of local neighbourhood models described here also have parallels in time

series and Markov chains, where it could be advantageous to weight across models with
different memory lengths.

3. Limit distribution theory

In this section we establish notation necessary for handling analysis in the various submod-
els, and then sort out behaviour of different maximum likelihood estimators. We also give
relevant limit results for log-likelihood ratios, which in particular are needed to understand
the performance characteristics of the AIC model choice criterion.

We work throughout under traditional conditions of regularity, sufficient to apply
familiar likelihood asymptotics arguments, as laid out in e.g. Lehmann (1983, Ch. 6).
Thus the log density admits two continuous partial derivatives in all directions; (θ0, γ0) is
an inner point of the parameter space; the variance matrix of the score function statistic is
finite and positive definite in a neighbourhood around this null point; and certain derivative
operations can be taken under the integral sign. Details and proofs of the lemmas are given
in Section 11.

3.1. Notation for calculus in submodels. Consider the score function
(
U(y)
V (y)

)
=

(
∂ log f(y, θ0, γ0)/∂θ
∂ log f(y, θ0, γ0)/∂γ

)
,

with a p-dimensional U and q-dimensional V . Their (p + q) × (p + q) variance matrix at
the null model is

Jfull =
(
J00 J01

J10 J11

)
, with inverse J−1

full =
(
J00 J01

J10 J11

)
,

say; in particular, let
K = J11 = (J11 − J10J

−1
00 J01)−1.

Under consideration are models indexed by subsets S of {1, . . . , q}. We let πS be the
projection matrix mapping v = (v1, . . . , vq)t to the subvector πSv = vS of components vj

with j ∈ S. Hence πS is of size |S| × q with |S| being the size of S. For VS = πSV we then
have

JS = Var0

(
U(Y )
VS(Y )

)
=

(
J00 J01,S

J10,S J11,S

)
=

(
J00 J01π

t
S

πSJ10 πSJ11π
t
S

)
.

We shall also need its inverse matrix, which has blocks J11,S = (πSK
−1πt

S)−1 = KS ,
J01,S = −J−1

00 J01π
t
SKS , and J00,S = J−1

00 + J−1
00 J01π

t
SKSπSJ10J

−1
00 .
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Lemma 3.1. Consider the averages Ūn = n−1
∑n

i=1 U(Yi) and V̄n = n−1
∑n

i=1 V (Yi).
Under the sequence of local alternatives (2.2),

(√
nŪn√
nV̄n

)
→d

(
J01δ
J11δ

)
+

(
M
N

)
, where

(
M
N

)
∼ Np+q(0, Jfull).

3.2. Behaviour of maximum likelihood estimators in submodels. Let (θ̂S , γ̂S) denote
maximum likelihood estimators in the model that includes γj parameters for j ∈ S.

Lemma 3.2. Under the sequence of models ftrue of (2.2),

( √
n(θ̂S − θ0)√
n(γ̂S − γ0,S)

)
→d

(
CS

DS

)
= J−1

S

(
J01δ +M

πSJ11δ +NS

)

∼ Np+|S|(J−1
S

(
J01

πSJ11

)
δ, J−1

S ).

Before stating the next lemma it is convenient to introduce some more notation,
which also will be needed later. Define first W = J10M + J11N = K(N − J10J

−1
00 M).

Here M ∼ Np(0, J00), and it is not difficult to establish that M and W are stochastically
independent, with W having a Nq(0,K) distribution. It follows from Lemma 3.2 and a
little algebra that δ̂S =

√
n(γ̂S − γ0,S) tends in distribution to DS = KSπSK

−1(δ +W ).
In particular,

Dn = δ̂full =
√
n(γ̂full − γ0) →d D = δ +W ∼ Nq(δ,K). (3.1)

Next let
HS = K−1/2πt

SKSπSK
−1/2 and ω = J10J

−1
00

∂µ
∂θ − ∂µ

∂γ , (3.2)

where the partial derivatives indicated are evaluated at the null model (θ0, γ0). Note that
ω is determined by the specifics of the focus parameter µ. The HS is a q × q projection
matrix, being symmetric and idempotent, and is orthogonal to I −HS . We define H∅ as
the null matrix of size q × q.

Lemma 3.3. Assume µ(θ, γ) has continuous partial derivatives in a neighbourhood

of (θ0, γ0). Then the maximum likelihood estimator of µ in the S model has limiting

distribution of the form

√
n(µ̂S − µtrue) →d ΛS = (∂µ

∂θ )tJ−1
00 M + ωt(δ −K1/2HSK

−1/2D),

where the partial derivatives indicated are evaluated at the null model (θ0, γ0). The lim-

iting variable is normal, with mean ωt(I − K1/2HSK
−1/2)δ and variance (∂µ

∂θ )tJ−1
00

∂µ
∂θ +

ωtK1/2HSK
1/2ω.
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3.3. AIC calculus. The Akaike information criterion is equal to

AICn,S = 2
n∑

i=1

log f(Yi, θ̂S , γ̂S , γ0,Sc)− 2|S|,

again with |S| being the number of elements in S. Its typical use is to pick out the
model with the largest value of this criterion. In order to understand the behaviour of
this criterion in the present framework, we start out with the likelihood-ratio statistic,
expanding it to the second order, using familiar arguments. This leads to

Gn,S = 2
n∑

i=1

log{f(Yi, θ̂S , γ̂S , γ0,Sc)/f(Yi, θ0, γ0)}

.= n

(
Ūn

V̄n,S

)t

J−1
S

(
Ūn

V̄n,S

)
→d

(
J01δ +M

πSJ11δ +NS

)t

J−1
S

(
J01δ +M

πSJ11δ +NS

)
.

(Here and later we use for notational simplicity Xn
.= X ′

n to indicate that the difference
between the two variables tends to zero in probability; thus they have the same limit
distribution, if it exists.) This is a noncentral chi-squared with p+ |S| degrees of freedom.
Furthermore,

Gn,S −Gn,∅ = n(V̄n,S − J10,SJ
−1
00 Ūn)tJ11,S(V̄n,S − J10,SJ

−1
00 Ūn)

→d (K−1
S δ +NS − J10,SJ

−1
00 M)tKS(K−1

S δ +NS − J10,SJ
−1
00 M),

which is a noncentral χ2
|S|(δ

tK−1
S δ).

Using a combination of previous arguments, δ̂S =
√
n(γ̂S−γ0,S) is at most op(1) away

from
√
nKSπS(V̄n−J10J

−1
00 Ūn), and similarly Dn

.=
√
nK(V̄n−J10J

−1
00 Ūn), which implies

δ̂S
.= KSπSK

−1Dn. The important consequence is that γ̂S , the estimator based on the S
subset model, can be expressed, within the first order local asymptotic framework, as a
function of γ̂full. It also follows that the AIC criterion can be expressed in terms of Dn as

AICn,S = Gn,S −Gn,∅ − 2|S| = Dt
nK

−1/2HSK
−1/2Dn − 2|S|+ op(1). (3.4)

3.4. Results for the regression framework. The methods and results above generalise
to the regression type framework of Section 2.2 without too many difficulties, with the
appropriate modifications and regularity conditions. An important ingredient is

Jn,full =
1
n

n∑

i=1

Var0



∂ log f(Yi |xi, β0, σ0, γ0)/∂β
∂ log f(Yi |xi, β0, σ0, γ0)/∂σ
∂ log f(Yi |xi, β0, σ0, γ0)/∂γ


 =

(
Jn,00 Jn,01

Jn,10 Jn,11

)
,

say, where Jn,00 is of size (p+1)× (p+1) and Jn,11 of size q×q. This matrix is assumed to
converge to a suitable Jfull as n increases. There are natural analogues of Lemmas 3.1–3.3
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as well as for the AIC calculus results. Concrete regularity conditions would depend on the
regression models studied. They would typically include assumptions of the Lindeberg–
Lyapunov type n−1/2 maxi≤n ‖xi‖ → 0, and which are fulfilled in situations where the xis
come from some covariate distribution with finite second moment.

4. Estimators-after-selection and compromise estimators

The estimator employed by a statistician using a model selection criterion really takes
the form µ̂ = µ̂

Ŝ
, where Ŝ is the (random) set picked out by the selection procedure, for

example, the one exhibiting the largest AICn,S number. The behaviour of a large class
of such mixed-situations estimators, which we may think of as frequentist model average
estimators, is studied in this section. Our results are in particular used to pinpoint the over-
optimistic nature of traditionally employed confidence interval, w.r.t. coverage probability.

4.1. Compromise estimators. To be able to single out submodels with more influence
than others it is natural to employ δ̂S =

√
n(γ̂S − γ0,S) in a suitable form. We saw in

Section 3.3 that the behaviour of δ̂S is essentially determined by that of Dn = δ̂full of (3.1).
Which submodel is picked out by the AIC method, for example, is determined by Dn, see
(3.4). This motivates studying the large class of compromise estimators, those taking the
form

µ̂ =
∑

S

c(S |Dn)µ̂S , (4.1)

where the sum is potentially over all subsets of {1, . . . , q}, including the empty subset,
which corresponds to the narrow model. The weight functions c(S | d) are required to sum
to 1 for each d, since otherwise the estimator is not consistent. A special case would be
µ̂ =

∑q
k=0 c({1, . . . , k} |Dn)µ̂k, say, indicating a mixture of estimators µ̂k constructed from

the model with S = {1, . . . , k}. Estimators formed after using the AIC criterion for nested
submodels would be of this type, for example.

For a general compromise estimator of type (4.1), and with HS as in (3.2), define
G(d) = K−1/2{∑S c(S | d)HS}K1/2 and

δ̂(D) = G(D)tD = K1/2
{∑

S

c(S |D)HS

}
K−1/2D. (4.2)

Then G(d) is a q× q matrix of functions in d = (d1, . . . , dq)t, and δ̂(D) is to be seen as an
estimator of δ based on D. Recall that Dn = δ̂full tends to D ∼ Nq(δ,K) by (3.1).

Theorem 4.1. As long as the weight functions c(S | d) sum to 1 for each z and

have at most a countable number of discontinuities,
√
n(µ̂ − µtrue) tends under the (2.2)

assumption in distribution to

Λ =
∑

S

c(S |D)ΛS = (∂µ
∂θ )tJ−1

00 M + ωt{δ − δ̂(D)}.
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Its mean and variance are ωt{δ−Eδ̂(D)} and τ2
0 +ωtVar δ̂(D)ω, with mean squared error

EΛ2 = τ2
0 +R(δ), in which

R(δ) = E(ωtδ̂ − ωtδ)2 = ωt E{δ̂(D)− δ}{δ̂(D)− δ}tω, (4.3)

where τ2
0 = (∂µ

∂θ )tJ−1
00

∂µ
∂θ and ω = J10J

−1
00

∂µ
∂θ − ∂µ

∂γ .

Densities of various Λs are displayed in Figure 5.1, illustrating in particular the non-
normal nature of the limit distributions.

Remark 4.1. The theorem spells out what happens to compromise estimators un-
der the (2.2) scenario. A reviewer has wondered whether this description is adequate, if
the underlying framework also allows perturbations of the θ part of the model. To in-
vestigate this issue, consider fn(y) = f(y, θ0 + η/

√
n, γ0 + δ/

√
n) instead of (2.2), where

η = (η1, . . . , ηp)t, along with µn = µ(θ0 + η/
√
n, γ0 + δ/

√
n). Then Lemmas 3.1–3.3 may

be generalised, leading to parallel statements involving say C̃S and D̃S , which now also
depend on η, with a consequent expression for say Λ̃S , the limit variable for

√
n(µ̂S −µn).

It turns out that Λ̃S has the same distribution as before, independent of η. This shows
that the description given in Theorem 4.1 continues to be adequate even when the θ part
of the model is being locally perturbed.

Remark 4.2. The theorem was stated in a form focussing on Dn of (3.1) and its
limit form D ∼ Nq(δ,K). It is convenient, also for interpretational purposes, to rephrase
in terms of

Zn = K̂−1/2Dn = K̂−1/2
√
n(γ̂full − γ0). (4.4)

and its limit form Z = K−1/2D ∼ Nq(a, I), via the link a = K−1/2δ. Note that Zn →d

Nq(a, I). Here K̂ is any reasonable estimator of K; it suffices that it is consistent for K un-
der the null model γ = γ0. Also, the weights of the compromise estimator c(S |Dn) may be
seen as functions of Zn rather than ofDn. For such compromise estimators

∑
S c̄(S |Zn)µ̂S ,

the limiting distribution has risk τ2
0 + R̄(a), where R̄(a) = E(ωtK1/2â − ωtK1/2a)2 and

â(Z) =
∑

S c̄(S |Z)HSZ. This is viewed as an estimator of a on the canonical scale where
Z ∼ Nq(a, I). Using this notation AICn,S = Zt

nHSZn − 2|S|+ op(1).

Remark 4.3. Note that πt
SKSπS is the q× q matrix with the elements of KS placed

according to the indexes of the subset S and with zeroes elsewhere. It is also worthwhile
recording the simpler structure that results in the special case of a diagonal K matrix.
Then HS is diagonal with values 1 for j ∈ S and 0 for j /∈ S. Accordingly,

â(z) = (W1(z)z1, . . . ,Wq(z)zq)t where Wj(z) =
∑

S

c̄(S | z)I{j ∈ S} (4.5)

in such situations. The limiting risk is τ2
0 +E[

∑q
j=1 ωjk

1/2
j {Wj(Z)Zj−aj}]2. Eq. (4.5) also

shows that different-looking compromise strategies may well have the same performance,
for large n. Let for illustration q = 3 with a diagonal K, with eight weight functions,

12



say c̄000(Zn), . . . , c̄111(Zn) with 0 and 1 indicating exclusion and inclusion of γ1, γ2, γ3 in
the model. Then the performance of the procedure is determined by the three functions
W1 = c̄100+ c̄101+ c̄110+ c̄111, W2 = c̄010+ c̄110+ c̄011+ c̄111, W3 = c̄001+ c̄101+ c̄011+ c̄111.

Theorem 4.1 spells out the drastic reduction in complexity by comparing model choice
and estimation strategies in the large-sample limit experiment. Performances of such
regimes are characterised fully by (4.3), in other words by a simpler estimation problem in
a standard situation involving a multinormal D ∼ Nq(δ,K) with known variance matrix.
Two viewpoints can be taken here. The first is that components δ1, . . . , δq are being
estimated simultaneously on the basis of D, with loss function {∑q

j=1 ωj(δ̂j − δj)}2. The
alternative viewpoint is that only the one-dimensional parameter ψ = ωtδ = ωtK1/2a

matters, and that this parameter has to be estimated under quadratic loss by estimators
of the form

ψ̂ = ωtδ̂(D) = ωtK1/2
{∑

S

c(S |D)HS

}
K−1/2D. (4.6)

It is instructive to see the role of the parameter of interest µ = µ(θ, γ); what is in the end
a good model selection strategy or a regime for smoothing between models does depend
on the parameter under study. This is perhaps only to be expected, but the point is often
overlooked, in that the most popular model choice methods work independently of the
inference to take place afterwards. See Claeskens and Hjort (2003) for applications where
different estimands correspond to different optimal submodels.

Importantly, the theory developed above goes through also for the regression model
cases, under mild regularity conditions of the type described in Section 3.4.

4.2. Dwindling confidence. The traditional use of model selection methods in practice
is to proceed as if the finally selected model had been chosen a priori. Thus a typical
confidence interval, taking intended coverage probability 90 per cent as an example, would
take the form

µ ∈ µ̂
Ŝ
± 1.645 τ̂

Ŝ
/
√
n, (4.7)

where Ŝ represents the chosen model and τ̂S/
√
n is an estimator of the standard deviation

for µ̂S , without model uncertainty for S. From Lemma 3.3 and Theorem 4.1, τ̂S estimates
τS = (τ2

0 + ωtK1/2HSK
1/2ω)1/2. Such procedures ignore the uncertainties involved in

the model selection step of the analysis and are consequently too optimistic about the
confidence level attained by such intervals; similar comments apply to tests and other
forms of inference. This is e.g. visible when one compares the optimistic standard deviation
estimates of Table 1.1, for the AIC-chosen µ-estimators, with the real ones, as found in
Table 9.1.

Consider any selection-estimator of this type, where the model selection is being de-
termined exactly or asymptotically via Zn of (3.3). These correspond to compromise
estimators (4.1) for which Rq is partitioned into regions RS , where c(S | z) = 1 for z ∈ RS
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Figure 4.1. True coverage probability when ignoring AIC choice between four
models, for q = 2, when ω = (1, 1)t and K = diag(1, 1).

and zero outside. Now study

Vn =
√
n(µ̂

Ŝ
− µtrue)/τ̂Ŝ .

By previous efforts, Vn →d V = Λ/τ(Z), say, where τ(z)2 = τ2
0 + ωtK1/2HSK

1/2ω for
z ∈ RS . Also, from the proof of Theorem 4.1, Λ | z is normal with variance τ2

0 and mean
ωt{δ − G(z)tK1/2z}. Thus the real coverage probability of an interval like (4.7) goes for
growing n to

p(a) = Pra{|V | ≤ 1.645} =
∑

S

∫

RS

Pr{|E(Λ | z) + τ0N |/τS ≤ 1.645}φ(z − a) dz,

in which N denotes a standard normal variable and again a = K−1/2δ.
For q = 1 these probabilities are easily calculated via numerical integration. For the

AIC-selected estimator, one chooses the narrow estimator when |Z| ≤ √
2 and the full one

when |Z| > √
2, and some algebra leads to p(a) being equal to

∫

|z|≤√2

Pr{|ρa+N | ≤ 1.645}φ(z−a) dz+
∫

|z|>√2

Pr
{ |ρ(z − a) +N |

(1 + ρ2)1/2
≤ 1.645

}
φ(z−a) dz,

in terms of ρ = ωK1/2/τ0. This is often significantly smaller than the intended level 0.90.
Figure 4.2 below displays the true coverage probability as a function of a, for AIC model
choice between narrow and wide models. We have also carried out such computations for
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the case of q = 2, using simulations. Figure 4.1 presents the coverage deficiency for AIC
choice amongst four models in a situation where ω = (1, 1)t and K = diag(1, 1). In the
limit as ‖a‖ → ∞ correct coverage is obtained.

4.3. Better confidence. We have seen that the traditionally employed construction
(4.7) leads to too optimistic intervals, in that the real coverage probability is lower than
the intended level. Aware of this phenomenon, Buckland et al. (1997) have suggested a
method for taking the extra model uncertainty into account, and which in particular leads
to modified confidence intervals. Their method has later been embraced by Burnham and
Anderson (2002, Section 4.3), particularly in conjunction with the smoothed AIC weights
for c(S |Dn), see Section 5.2. The method amounts to using µ̂ ± u ŝen as confidence
intervals, with u the appropriate normal quantile and formula (9) in Buckland et al. for
the estimated standard error ŝen. Rephrased to fit our framework,

ŝen =
∑

S

c(S |Dn)(τ̂2
S/n+ b̂2S)1/2,

in which τ̂S is a consistent estimator of τS = (τ2
0 + ωtK1/2HSK

1/2ω)1/2 and b̂S = µ̂S − µ̂.
The resulting coverage probability pn is not studied accurately in the references mentioned,
but it is claimed that it will be close to the intended Pr{−u ≤ N(0, 1) ≤ u}. Our methods
make it possible to study pn accurately, however. One has pn = Pr{−u ≤ Bn ≤ u},
where Bn = (µ̂ − µtrue)/ŝen. This variable has a well-defined limit distribution, since√
nŝen →d ŝe =

∑
S c(S |D){τ2

S +(ΛS−Λ)2}1/2, simultaneously with
√
n(µ̂−µtrue) →d Λ,

by an extension of arguments used in Section 11 to prove Theorem 4.1. Furthermore,
ΛS − Λ = ωt{δ̂(D)−K1/2HSK

−1/2D}. Thus

Bn →d B =
Λ
ŝe

=
Λ0 + ωt{δ − δ̂(D)}∑

S c(S |D){τ2
S + [ωt{δ̂(D)−K1/2HSK−1/2D}]2}1/2

.

This variable is a normal, for given D, but is clearly not standard normal when averaged
over the distribution of D, and neither is it centred at zero, so the coverage probability pn

is biased.
To illustrate this, consider the q = 1 case, with compromise estimator µ̂ = {1 −

W (Zn)}µ̂narr +W (Zn)µ̂full, for which Λ∅ = Λ0 + ωK1/2a and Λfull = Λ0 + ωK1/2(a− Z),
writing Λ0 = (∂µ

∂θ )tJ−1
00 M . Here B = Λ/ŝe takes the form

Λ0 + ωK1/2{a−W (Z)Z}
{1−W (Z)}{τ2

0 + ω2KW (Z)2Z2}1/2 +W (Z){τ2
0 + ω2K + ω2K{1−W (Z)}2Z2}1/2

,

with Λ0 ∼ N(0, τ2
0 ) and independent of Z ∼ N(a, 1). The limiting coverage probability may

then be computed via numerical integration, as p(a) =
∫

Pr{−u ≤ B ≤ u | z}φ(z − a) dz.
See Figure 4.2.
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Figure 4.2. Exact limiting coverage probability p(a) for three confidence interval
procedures, in two situations, corresponding to ρ = ωK1/2/τ0 equal to 1 and 2/3,
for q = 1. The three methods are the AIC-based version of (4.7) (dotted line);
the smoothed AIC method of Section 5.2 using ŝen described above as standard
error (solid line); and finally the general (4.8) method, which gives correct 0.90
coverage for each method (dashed line).

Consider instead

lown = µ̂− ω̂t{Dn − δ̂(Dn)}/√n− uκ̂/
√
n,

upn = µ̂− ω̂t{Dn − δ̂(Dn)}/√n+ uκ̂/
√
n,

(4.8)

where ω̂ and κ̂ are consistent estimators of ω and κ = τfull = (τ2
0 + ωtKω)1/2, and u is a

normal quantile. We observe that the coverage probability pn = Pr{lown ≤ µtrue ≤ upn}
is the same as Pr{−u ≤ Tn ≤ u}, where

Tn =
[√
n(µ̂− µtrue)− ω̂t{Dn − δ̂(Dn)}]/κ̂.

But there is simultaneous convergence in distribution
(√
n(µ̂− µtrue), Dn

) →d

(
Λ0 + ωt{δ − δ̂(D)}, D)

,

essentially by the arguments used to prove Theorem 4.1. It follows that Tn →d {Λ0 +
ωt(δ−D)}/κ, which is simply a standard normal. Thus, with u = 1.645, for example, the
(4.8) interval has asymptotic confidence level precisely the intended 90% level.

4.4. Example: Exponential within Weibull. Let Y1, . . . , Yn come from the Weibull
distribution with cumulative 1−exp{−(θy)γ}, with γ in the vicinity of γ0 = 1. With some
efforts one finds the information matrix, with inverse;

J =
(

γ2/θ2 (1− r)θ
(1− r)/θ c2/γ2

)
, J−1 =

1
π2/6

(
c2θ2/γ2 −(1− r)θ

−(1− r)/θ γ2

)
,
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in which r = 0.5772... is the Euler–Mascheroni constant and c2 = π2/6 + (1 − r)2. We
consider estimators of the median µ = (log 2)1/γ/θ of the form

µ̂ = {1−W (Zn)}µ̂narr +W (Zn)µ̂full = {1−W (Zn)} log 2

θ̂narr

+W (Zn)
(log 2)1/γ̂full

θ̂full

,

where, following our recipe, Zn =
√
n(γ̂full−1)/K̂1/2 with K̂estimating K = 6γ2/π2. Also,

ω = µ{−(1− r) + log q}/γ2, in terms of v = log 2, and we find

τ0 = v1/γ/(θγ), (Kω2)1/2 = q1/γ/(θγ)| − (1− r) + log v|
√

6/π.

When γ = 1+δ/
√
n, the limit distribution of

√
n(µ̂−µtrue) is Λ = Λ0 +ωK1/2{a−W (Z)},

where Λ0 ∼ N(0, τ2
0 ) and is independent of Z ∼ N(a, 1), and a = δ/K1/2.

We have carried out simulations in this example, for estimation of the median and
other quantiles, using hard and smoothed AIC estimators, and yet further of the compro-
mise estimators described in Section 5. The density of Tn above was seen to be quite close
to its limiting standard normal density, for even moderate n. The coverage probability for
the (4.8) intervals is consequently close to the intended level.

5. Some model average estimation schemes

In this section we go through a partial list of particularly attractive FMA methods. Dif-
ferent FMA schemes are characterised by their δ-estimator and ψ-estimator counterparts
G(D)tD and ωtG(D)tD in the limit experiment, as shown in the previous section. It is
therefore often fruitful to construct FMA regimes via arguments inside the context of the
limit experiment.

5.1. The AIC selection-estimator. For the AIC method with all 2q subsets allowed,
let RS be the set of D such that AICS(D) is larger than all other AICS′(D), where

AICS(D) = DtK−1/2HSK
−1/2D − 2|S| = ZtHSZ − 2|S|. (5.1)

Then for D ∈ RS , c(S |D) = 1 while the other c(S′ |D) = 0. For the case of K being a
diagonal matrix with diagonal elements kj , we have AICS(D) =

∑
j∈S(D2

j/kj − 2). This
shows that, to the first order of large-sample approximation, precisely those j are included
in the selected set for which D2

n,j/k̂j = n(γ̂full,j − γ0,j)2/k̂j > 2.

5.2. A smoothed AIC-based estimator. Buckland et al. (1997) make a general
model averaging suggestion that amounts to taking weights c∗(S |data) proportional to
exp(`S − |S|), where `S is the maximised log-likelihood at model S. Thus comparing
weights for models of the same complexity corresponds to likelihood ratio methods, and
the penalisation of these otherwise ad hoc constructed terms stem from the analogy with
the AIC method. By (3.4), the smoothed AIC weights may be represented as

exp(1
2AICn,S)∑

all S′ exp(1
2AICn,S′)

=
exp(1

2D
t
nK

−1/2HSK
−1/2Dn − |S|)∑

all S′ exp(1
2D

t
nK

−1/2H ′
SK

−1/2Dn − |S′|)
+ op(1). (5.2)
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It follows from the theory developed in Section 4 that the large-sample distributions of
compromise estimators are the same, whether one uses the left hand side ratio or the
right hand side ratio as weights. Note also that there is some independent motivation
for using such weights from a Bayesian analogy, where exp( 1

2BICS)/
∑

S′ exp(1
2BICS′)

is known to be an approximation to the posterior probability of model S being correct;
see Schwarz (1978), as well as discussion in Burnham and Anderson (2002, Section 6.4).
Results developed in Section 8 below lead to other and potentially better approximations.

Using the theory developed in Section 4, the limiting distribution is a suitable convex
mixture of normals, and the limiting squared error can be computed via (4.3). Buckland et
al. partly motivated their method by considering correlations between different estimators,
but without estimating these correlations accurately. We may show, using arguments of
Section 4, that the limiting correlation between submodel estimators µ̂S and µ̂S′ is

ρ(S, S′) =
τ2
0 + ωtK1/2HSHS′K

1/2ω

(τ2
0 + ωtK1/2HSK1/2ω)1/2(τ2

0 + ωtK1/2HS′K1/2ω)1/2
. (5.3)

We may also derive the limiting correlation between any two compromise estimators via
similar arguments. Its size depends in particular on the relative sizes of τ0 and (ωtKω)1/2.

5.3. The FIC selection-estimator. The AIC method selects one winning model, re-
gardless of the intended use for this model. In contrast, Claeskens and Hjort (2003) develop
a focussed information criterion that specifically aims at finding the best candidate model
for a given focus parameter µ. While the AIC method chooses S to maximise AICS(D) of
(5.1), the FIC goes for S to minimise

FICS(D) = (ωtD − ψ̂S)2 + 2ωt
SKSωS , where ψ̂S = ωtK1/2HSK

−1/2D.

This is the limit experiment version of the FIC. In practice one plugs in estimates of ω, K,
KS and HS . Suppose for example that the choice is only between the narrow and the full
models. Then AIC selects the full model provided DtK−1D ≥ 2q, while the corresponding
FIC criterion for selecting the full model is (ωtD)2 ≥ 2ωtKω.

It is also attractive to smooth across estimators using the information carried by the
FIC scores, and we suggest using

c(S |D) = exp
(
− 1

2κ
FICS

ωtKω

)/ ∑

S′
exp

(
− 1

2κ
FICS′

ωtKω

)
with κ ≥ 0. (5.4)

Here κ is an algorithmic parameter, bridging from uniform weighting (κ close to zero) to the
hard-core FIC (which is the case of large κ). Of course the added 1

2 is somewhat redundant,
but the form (5.4) is suggested by connections to certain empirical Bayes arguments that
can be developed using the theory of Section 9. The ωtKω factor appearing in the scaling
for κ is the constant risk of the minimax estimator δ̂ = D. The point of the scaling is that
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Figure 5.1. Density of the limiting distribution Λ of
√
n(µ̂ − µtrue), for three

compromise estimators, at four positions in the parameter space. The situation
studied has q = 2, K = diag(1, 1), ω = (1, 1)t and τ0 = 0.5, and the four positions
are (a) (0, 0), (b) (1.5, 1.5), (c) (1,−1), (d) (2,−2) for a = (a1, a2). The estimators
are post-AIC (smooth line), smoothed AIC(dotted line), and smoothed FIC with
κ = 1 in (5.4) (dashed line).

κ values used in different data contexts now can be compared directly. One may show here
that for the one-dimensional case q = 1, the value κ = 1 makes the weights of (5.4) agree
with those of for the smoothed AIC.

To illustrate the limiting distribution of some compromise estimators, we display In
Figure 5.1 the density of Λ for a situation with q = 2 extra parameters, where K =
diag(1, 1), ω = (1, 1)t, and τ0 = 0.5. The non-normal nature is evident, not only for non-
smooth methods like the AIC, but also for smoothed versions thereof. For each of the four
positions in the parameter space considered here, the smoothed FIC wins over the others
in terms of mean squared error.

5.4. Minimising estimated risk. Consider estimators of the form
∑

S c(S)µ̂S , with non-
random weights summing to 1. From previous results, the limiting distribution in question
is that of Λ =

∑
S c(S)ΛS , with ΛS as in Lemma 3.3. One finds EΛ = ωt(I − Q)tδ,

where Q =
∑

S c(S)K−1/2HSK
1/2, and furthermore VarΛ = τ2

0 + ωtQtKQω, using the
covariance extension of Lemma 3.3 which was also used in connection with (5.3). Thus the
limiting risk of the estimator is τ2

0 +R(δ), where R(δ) = ωt{(I−Q)tδδt(I−Q)+QtKQ}ω.
This also agrees with (4.3).

Various model average estimators may now be constructed, along the following lines.
Estimate the riskR(δ), for example by insertingD for δ above, or alternatively the unbiased
DDt − K for δδt. Then select weights c(S) to minimise this estimated risk. Different
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versions emerge from this, depending also on the list of submodels one wishes to smooth
across. A simple special case worth recording is that of smoothing optimally between the
two extreme models, µ̂ = (1 − c)µ̂narr + cµ̂full. Using ψ̂ = ωtD as estimator of ψ = ωtδ

in the full model, for the current purpose of estimating the optimal weights, the result for
the limit experiment situation is

µ̂ =
ωtKω

ψ̂2 + ωtKω
µ̂narr +

ψ̂2

ψ̂2 + ωtKω
µ̂full. (5.5)

With real data, one in addition plugs in estimates of ω and K and uses ψ̂ = ω̂tDn.
5.5. Smoothing across singletons. An attractive challenge is to form data-based

averages over estimators µ̂{j}, corresponding to the simple one-parameter model extensions
of the narrow model. These take the form

∑q
j=0 c(j |Dn)µ̂{j}, where j = 0 corresponds

to the narrow model estimator, and might be thought of as resembling first-stage Taylor
expansion estimators. These µ-estimators are further related to δ-estimators of the form
δ̂ = G(D)tD in the limit experiment, where G(D) is as in (4.2) but engaging only HS

matrices for S being empty or a singleton.
For brevity we present only one of these methods, which has been seen to perform well

in some limited simulation exercises of the authors. This method emerges from Bayesian
and empirical Bayesian considerations, starting with a prior which has δ = 0 with some
probability p0 and with probability pj has δj from a normal and the other δis equal to
zero, and where

∑q
j=0 pj = 1. The estimator is

µ̂ = (1− ρ̂)µ̂narr + ρ̂

q∑

j=1

exp( 1
2 ρ̂k

jj T̂ 2
j )

∑q
i=1 exp( 1

2 ρ̂k
iiT̂ 2

i )
µ̂{j}, where ρ̂ =

τ̂2

1 + τ̂2
, (5.6)

with τ̂ = (Dt
nK̂

−1Dn−q)1/2
+ and T̂j = (k̂jj)−1etjK̂

−1δ̂full, in terms of the diagonal elements
of K̂−1 and the jth unit vector ej . Details of this construction, along with useful variations,
are available in a technical report from the authors.

5.6. An empirical Bayes model smoother. The following arguments motivate a par-
ticular estimator-smoother, with data-dependent weights c(S |Dn) in (4.1). The idea is to
start with a Bayesian mixture prior, of a more general type than that used in Section 5.5,
then work out the necessary details pertaining to the posterior, and finally estimate the
required spread parameter from the marginal distribution of data.

Remark 5.1. We use this opportunity to make the following general point. Our
theory has been developed by the desire to handle averages of subset estimators µ̂S of the
form (2.1), i.e. for subsets of the original (θ, γ) or (θ, δ) parameterisation of the fullest
model. Mathematically we are free to reparametrise from δ to the canonical a = K−1/2δ

scale, however, and instead work with subset estimators µ∗S = µ(θ∗S , a
∗
S , 0Sc) and av-

erages µ∗ =
∑

S c
∗(S |Zn)µ∗S . The advantage is a cleaner orthogonal structure, since
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Z ∼ Nq(a, I). The theory of Sections 3 and 4 would go through with minor changes. We
illustrate this here, since the mixture strategy becomes easier to develop and describe.

Focus first on one of the aj components, and let it be zero with probability p0 and
a N(0, σ2) with probability p1. Then aj | zj is zero with probability p̃0(zj) and from a
N(ρzj , ρ) with probability p̃1(zj), where ρ = σ2/(1 + σ2). Furthermore,

p̃1(zj) =
p1φ(zj , 1 + σ2)

p0φ(zj , 1) + p1φ(zj , 1 + σ2)
=

p1(1 + σ2)−1/2 exp(1
2ρz

2
j )

p0 + p1(1 + σ2)−1/2 exp( 1
2ρz

2
j )

with p̃0(zj) = 1− p̃1(zj) and φ(z, v2) the N(0, v2) density evaluated at z. If now a1, . . . , aq

are given independent priors of this type, which is reasonable in that the ajs have been
transformed towards orthogonality and the same scale, then E(aj | z) = ρp̃1(zj)zj for j =
1, . . . , q. By the general recipe established in Remark 4.3, we should have âj = Wj(z)zj

for Wj(z) =
∑

S:j∈S c
∗(S | z). But this fits in with the compromise regime that uses

c∗(S | z) = ρ

q∏

j=1

p̃0(zj)I{j /∈S}p̃1(zj)I{j∈S} for non-empty S

and c(∅ | z) = 1−ρ+ρ
∏q

j=1 p̃0(zj). A fruitful variation is the empirical Bayes construction
which inserts an estimate σ̂ for σ in the c∗(S | z) formulae above. Such an estimate may
emerge from likelihood analysis based on the marginal distribution of (Z1, . . . , Zq). One
may also use a hyper-prior for σ in a two-stage Bayesian fashion. It suffices for the present
purposes to devise a simple moment estimator, however, using that

∑q
j=1 Z

2
j has mean

q + qp1σ
2. We therefore propose σ̂2 = (

∑q
j=1 Z

2
j − q)+/(qp1), where the positive part

notation indicates that σ̂ = 0 in the case of
∑q

j=1 Z
2
j ≤ q. Such an event suggests that

none of the ajs are significantly non-zero, and the scheme selects the narrow model.
Several variations of these arguments could be considered. One may e.g. use a vague

hyper-prior for the σ parameter. Another alternative is to estimate both σ and p1 in the
above construction based on the marginal distribution of (Z1, . . . , Zq), which obviates the
need to specify p1 in advance.

6. Illustrations and applications

6.1. Computational aspects. Frequentist model averaging analysis can be easily per-
formed using standard statistical software. All numerical results presented in this article
are obtained using the software packages S-Plus and R.

Obtain parameter estimates in the different models and either compute the model
selection criterion value for each of these models in order to form the indicator variable
of the optimal model, or directly construct the general model averaging weights of choice.
From the estimate in the biggest model we construct δ̂. Nonlinear optimisation algorithms,
such as nlm() in R, provide us immediately with a matrix of second order partial derivatives,
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leading to the matrix Ĵfull. Next we construct the projection matrices πS , and use these
to define K̂S and ĤS , for each model S. Partial derivatives of µ w.r.t. θ parameters and
γ parameters, at either (θ̂narr, γ0) or (θ̂full, γ0), are needed for the computation of ω̂ and
τ̂0. These are sometimes easy to derive mathematically, and can otherwise be computed
using numerical derivatives.

As far as our theoretical results are concerned we may use any J∗full estimator for the
crucial matrix Jfull of Section 3.1 (along with the consequent estimators for K, KS , HS), as
long as it is consistent under our γ0 + δ/

√
n framework. In particular, it may be computed

under ‘narrow’ or ‘full’ circumstances. Narrow estimation is sometimes easiest, via explicit
formulae or via simulation of score vectors under the null model. To guard against cases
where δ is some distance away from zero, however, it will be more satisfactory and robust
to use full-model estimation; see also parallel discussion of this in Claeskens and Hjort
(2003).

We have found it useful in practice to simulate the limit distribution Λ of Theorem
4.1, for the average estimator scheme being used, at δ corresponding to its estimate δ̂full. A
density estimate of say 10,000 such Λ copies is informative, and leads to estimated bias and
standard deviation for the compromise estimator being used, as well as to approximative
confidence intervals.

6.2. Averaging over logistic regression models. Time has come to revisit the 189
babies of Section 1.2. Here we illustrate our general methodology by exhibiting results for
each of the three focus parameters p(white), p(black) and their ratio p(black)/p(white),
for six different FMA regimes. These are the AIC-selected estimator, the smooth-AIC of
Section 5.2, the FIC-selected, the smooth-FIC of (5.4) with κ = 1, the smoothing across
singletons which makes data-dictated compromises between the four models ‘0’, ‘3’, ‘4’,
‘5’, and finally the simple compromise between narrow and full models as in (5.5).

(a) (b) (c) (d) (e) (f)
For p(white):
estimate 0.269 0.261 0.263 0.258 0.281 0.242
stdev 0.051 0.047 0.050 0.045 0.039 0.048
lower 0.174 0.168 0.173 0.165 0.173 0.191
upper 0.343 0.322 0.338 0.315 0.302 0.350

For p(black):
estimate 0.412 0.368 0.412 0.365 0.323 0.380
stdev 0.112 0.107 0.115 0.106 0.107 0.096
lower 0.257 0.216 0.257 0.215 0.203 0.190
upper 0.618 0.559 0.614 0.553 0.549 0.501

For the ratio p(black)/p(white):
estimate 1.534 1.440 1.564 1.501 1.159 1.651
stdev 0.668 0.610 0.647 0.582 0.516 0.567
lower 0.681 0.640 0.712 0.779 0.843 0.384
upper 2.792 2.563 2.758 2.619 2.414 2.299
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Table 6.1. For each of the three focus parameters associated with the study
of low birth weights described in Section 1.2, the table gives parameter estimate
and estimated standard deviation, along with lower and upper points for 90%
confidence intervals for the FMA strategies: (a) AIC, (b) smooth-AIC, (c) FIC,
(d) smooth-FIC, (e) smoothing across singletons, and (f) compromise between
narrow and full model.

We record here that for p(white), ω̂ = (−0.245, 0.032, 0.065) and τ̂0 = 0.477; for
p(black), ω̂ = (0.429,−0.185, 0.073) and τ̂0 = 0.550; while for the ratio parameter, ω̂ =
(3.783,−10.057,−0.190) with τ̂0 = 0.495. We observe that the averaging across singletons
method leads to low standard deviation and short confidence intervals. This is particularly
noticeable for the ratio parameter. The standard deviations and the confidence bounds
come from 10,000 simulations of the appropriate Λ distributions.

6.3. Averaging over covariance structure models. There are no inherent problems with
applying our methodology to situations where data are multi-dimensional. To illustrate
this we report on a brief investigation of multinormal data where different models for the
covariance structure, in the absence of clear a priori preferences, are being averaged over to
form estimators of quantities of interest. We note that there are several areas of statistics
where covariance modelling is of interest, and sometimes perhaps of primary concern, as
with factor analysis, and where variations of our methods might be fruitful.

Assume one has observed d-dimensional vectors Y = (X1, . . . , Xd)t from the multi-
normal Nd(ξ,Σ), where different models for the structure of Σ are being considered. As
a specific example, we use data from the so-called Adelskalenderen of speedskating. This
is the list of the best speedskaters ever, as ranked by their personal bests over the four
distances 500, 1500, 5000, 10000 m, via the classical point-sum X1 +X2 +X3 +X4, where
X1 is the 500 m time, X2 is the 1500 m time divided by 3, X3 is the 5k time divided
by 10, and X4 the 10k time divided by 20. The correlation structure of the 4-vector
Y is important when relating, discussing and predicting performances on different dis-
tances. While there is a long list of parameters µ = µ(ξ,Σ) that on occasions will ignite
the fascination of speedskating fans, for this discussion we single out as focus parameters
the generalised standard deviation measures µ1 = {det(Σ)}1/8 and µ2 = {Tr(Σ)}1/2, the
average correlation µ3 = 1

6

∑
i<j corr(Xi, Xj), and the so-called maximal correlation µ4

between (X1, X2, X3) and X4. The latter is the maximal correlation between a linear com-
bination of X1, X2, X3 and X4, and is e.g. of interest at championships when one tries to
predict the final outcomes, after the completion of the three first distances. It is also equal
to (Σ10Σ−1

00 Σ01/Σ11)1/2, in terms of the blocks of Σ, of size 3× 3 for Σ00 and so on. Below
we analyse the top of the Adelskalenderen, with the best n = 250 skaters ever, as per the
end of the 2002 season. The vectors Y1, . . . , Yn are by definition ranked, but as long as
one discusses estimators that are permutation-invariant we may view the data vectors as
a random sample from the population of the top skaters of the world.

A minimal plausible model for Σ is M0, which has equicorrelation and equal variances.
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Model M1 assumes equicorrelation though allows the variances to be different, while M2

has no pre-imposed structure on the correlations but does assume equal variances. The
fullest model M3 is the unstructured covariance matrix with 10 parameters. To place this
setting into the framework developed in earlier sections, let

Σ = σ2




1 ρφ2 ρφ3(1 + ν13) ρφ4(1 + ν14)
ρφ2 φ2

2 ρφ2φ3(1 + ν23) ρφ2φ4(1 + ν24)
ρφ3(1 + ν13) ρφ2φ3(1 + ν23) φ2

3 ρφ3φ4(1 + ν34)
ρφ4(1 + ν14) ρφ2φ4(1 + ν24) ρφ3φ4(1 + ν34) φ2

4


 .

The parameter θ = (σ2, ρ) is present in all of the models while subsets of γ = (φ2, φ3, φ4,

ν13, ν14, ν23, ν24, ν34) are present in some of the models. Here γ0 = (1, 1, 1, 0, 0, 0, 0, 0). We
use the criteria AIC and FIC to select an appropriate covariance structure.

For the models described above we get the following parameter estimates. Note that
FIC depends on the parameter under focus and hence gives different values for different µks.
On this occasion, the FIC for parameter µ2 points to modelM1, while FIC selects modelM3

for all other parameters, as does the AIC. Also presented in the table are the model aver-
aged estimates using smoothed AIC and FIC weights, using weights as with (5.2) and (5.4),
where for the latter κ = 1. Confidence intervals are constructed using (4.8) with observed
value of Dn = δ̂full equal to (−1.624,−0.308, 5.948,−16.482,−22.861,−7.306,−15.478,
−0.892)t. At nominal level 90% we find for the µ2 parameter (2.390, 2.611) for FIC,
(2.254, 2.474) for both AIC and smooth-AIC, and (2.339, 2.559) for smooth-FIC.

M0 M1 M2 M3 sm-AIC sm-FIC
µ̂1 1.146 1.101 0.844 0.816 0.816 0.816
µ̂2 2.364 2.389 2.461 2.364 2.364 2.381
µ̂3 0.225 0.271 0.388 0.262 0.262 0.263
µ̂4 0.324 0.378 0.751 0.810 0.810 0.796

Table 6.2. Six different estimates of the parameters µ1, µ2, µ3, µ4. These cor-
respond to models M0,M1,M2,M3, and to AIC-smoothed and FIC-smoothed
averages thereof, as per Sections 5.2–5.3.

Following the computational steps in Section 6.1, we use simulation to compute the
standard deviation of the estimators, for post model selection estimation by AIC and FIC,
as well as for the smoothed versions. For the µ2 parameter, for example, we have the
following estimated standard deviations, for the different methods: the same value 1.029
for post-AIC and smooth-AIC, while for the post-FIC and smooth-FIC the value is 1.009.

6.4. Variable selection and model smoothing in linear regression. Assume that obser-
vations Yi are to be regressed w.r.t. regressors xi,1, . . . , xi,p and possibly w.r.t. a further
subset of additional regressors ui,1, . . . , ui,q. Which subset of these ought to be included,
and which ways are there of averaging over all models? The natural framework is that of
Yi = α+xt

iβ+ut
iγ+εi for i = 1, . . . , n, where the εis are independent and N(0, σ2). Suppose

that the uis have been made orthogonal to the xis, in the sense that n−1
∑n

i=1 xiu
t
i = 0.
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Then
Jn,full = σ−2diag(2,Σ00,Σ11) with J−1

n,full = σ−2diag( 1
2 ,Σ

−1
00 ,Σ

−1
11 ),

where Σ00 = n−1
∑n

i=1 xix
t
i and Σ11 = n−1

∑n
i=1 uiu

t
i. Inside this framework we may now

study model selection and model averaging for different focus parameters, using methods
developed in earlier sections. For the arguably most important case of µ = E(Y |x, u) at
some given location (x, u), FMA estimators take the form

µ̂(x, u) =
∑

S

c(S |Dn)(xtβ̂S + ut
S γ̂S) = xtβ∗ + utγ∗,

where the β∗j s and γ∗ks involved are non-linear regression coefficient estimates. Methods
and results of earlier sections can be used to settle on weighting schemes here, along with
proper analysis of performances.

7. Risk comparison

We are now in position to compare various model selection-estimation and model averaging
methods in terms of performance.

7.1. Comparing risks in the limit experiment. In a given situation the risk function
nE(µ̂ − µtrue)2 can be a quite complicated quantity, particularly when the estimator in
question uses non-linear weight schemes and when the underlying models are difficult.
There is a drastic reduction in complexity as n grows, however, as spelled out in Section
4, in that the limiting risk τ2

0 +R(δ) depends on only a few crucial quantities. This allows
broad comparisons to be made in a fairly easy fashion, by computing risk functions for
situations and estimation schemes of interest, in their reduced limit experiment form.

It is often convenient to discuss performance in terms of R̄(a) instead of R(δ), since
a = K−1/2δ is scale-independent with Z ∼ Nq(a, I). Note in this connection Remark 5.1
about reparametrisation, which makes it possible to have K diagonal if one works with
submodels represented by subsets of (a1, . . . , aq)t. Also note that when K is diagonal,

R̄(a) =
∑

i,j

ωiωjk
1/2
i k

1/2
j

[
Vi,j(a) + {Mi(a)− ai}{Mj(a)− aj}

]
(7.1)

in terms of the means Mi(a) of Wi(Z)Zi and covariance Vi,j(a) of Wi(Z)Zi with Wj(Z)Zj .
This follows from Remark 4.3, and shows that even complicated risk functions may be
computed easily via simulation. Before we go on to a briefly annotated list of estimators
we mention one more fact, namely that for the simplest case of q = 1 model extension,

R̄(a) = Kω2R∗(a) in terms of R∗(a) = E{W (Z)Z − a}2. (7.2)

This is the one-dimensional risk function for the estimator W (Z)Z for a in the standard
experiment where Z ∼ N(a, 1). Here 1−W (Zn) and W (Zn) are the weights given to µ̂narr

and µ̂full. Such R∗(a) functions are displayed in Figure 7.1 for various competing schemes.
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(i) Narrow estimation. Here c̄(∅ |Z) = 1 and c̄(S |Z) = 0 for other subsets, reflecting
the optimistic belief, or blissful ignorance, that a = 0. The limiting risk is R̄narr(a) =
(ωtδ)2 = (ωtK1/2a)2, which is unbounded and quickly becomes big in size. The risk is
satisfactorily small when ‖a‖ is small (and in that case for all estimands µ), or in cases
where a is nearly orthogonal to K1/2ω (which depends on the estimand).

(ii) Wide model estimation. Here c̄(S |Z) = 1 for the full set, which leads to a constant
minimax risk, R̄full(a) = ωtKω. This is satisfactory performance in some situations, but
the estimator is often too guardedly pessimistic, losing out to methods that take into
account that a could be small in size or have low correlation with K1/2ω (making in that
case ψ = ωtδ small in size).

(iii) Hard and smooth AIC-selection estimators. The following comments are valid
for the non-nested case. For simplicity of illustration also take K to be diagonal, in which
case the AIC scores can be written

∑
j∈S(Z2

j − 2) in terms of Zj = Dj/k
1/2
j . This entails

a quite simple structure for the RS regions, as the winning S is {j: |zj | >
√

2}. Turning
this around, one sees that

RS = {z: |zj | >
√

2 for each j ∈ S and |zj | ≤
√

2 for each j /∈ S}.
In particular, R∅ = [−√2,

√
2]q is the set inside which the method selects the narrow

model. This also leads to Wj(z) = I{|zj | >
√

2} in (4.5), making it possible to calculate
R̄(a) of (7.1) explicitly. We have done this in some further numerical comparison work,
not reported on here due to limitations of space. The smoothed AIC scheme described
in Section 5.2 uses weights proportional to exp{1

2

∑
j∈S(z2

j − 2)}, as opposed to the hard
thresholding I{|zj | >

√
2} involved in ordinary AIC.

(iv) Hard and smooth FIC-selection estimators. The limiting risk functions for the two
compromise estimators which use respectively the AIC and the FIC become τ2

0 + R̄aic(a)
and τ2

0 + R̄fic(a), where R̄fic(a) = E{ωtK1/2Z Ific(Z) − ωtK1/2a}2 with an analogous
definition for R̄aic(a). Here Ific(z) = I{(ωtK1/2z)2 ≥ 2ωtKω} and Iaic(z) = I{ztz ≥ 2q}.
Investigations reported on in Claeskens and Hjort (2003) show that the FIC method often
does better than the AIC. Also, it typically pays off to smooth the FIC weights as in (5.4).

(v) Average-across-singletons estimator. When K is diagonal, the method developed
in Section 5.5 has

R̄(a) = E
[ q∑

j=1

ωjk
1/2
j

{ exp(1
2 ρ̂Z

2
j )∑q

i=1 exp( 1
2 ρ̂Z

2
i )
ρ̂Zj − aj

}]2

,

where ρ̂ = τ̂2/(1 + τ̂2) and τ̂ = (‖Z‖2 − q)1/2
+ .

(vi) Other empirical Bayes schemes. The main method of Section 5.5 may be analysed
via the appropriate

Wj(z) = ρ̂
p1(1 + σ̂2)−1/2 exp(1

2 ρ̂z
2
j )

p0 + p1(1 + σ̂2)−1/2 exp(1
2 ρ̂z

2
j )
, with ρ̂ =

σ̂2

1 + σ̂2
,
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risk R(a) for six methods

a
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Figure 7.1. Risk functions R(a) associated with six FMA methods, for q = 1,
as in (7.2); these are symmetric around zero and are displayed here for a ∈ [0, 5].
The AIC one (dotted line) starts at 0.572 with max-risk 1.650. The pre-test
approach which uses 0.05 as test level (dotted line) starts at 0.279 with high
max-risk 2.464. The smoothed AIC (solid line) starts at 0.378 with max-risk
1.551. The empirical Bayes singletons method (dashed line) starts at 0.333 with
max-risk 1.491. The method corresponding to (5.5) (solid line) starts at 0.467
with low max-risk 1.252. Finally the method of Section 5.6 (dashed line), with
p0 = 0.25, starts at 0.335 with max-risk 1.619.

along with simulation-based computation of R̄(a), as per (7.1). Alternatives may be anal-
ysed similarly.

We have studied risk functions for various procedures, for the one- and two-dimensional
cases, but cannot report in any depth here due to limitations of space. Some brief remarks
are as follows. (a) It pays to smooth the hard-core AIC and FIC methods, as in Sections
5.2–5.3, and sometimes with a κ bigger than 1 in (5.4). These risk functions are smaller
than the constant minimax risk ωtKω in a decent neighbourhood around zero, then in-
crease, and level off towards the minimax value as ‖a‖ grows. (b) The singletons method
of (5.6) does quite well in a reasonable neighbourhood around zero and along axes, where
one |δj | is big but the others small, but its risk may become large when more than one |δj |
becomes big. (c) The empirical Bayes scheme of Section 5.6, along with similarly inspired
versions, does quite well in terms of low max-risk and being smaller than ωtKω in a broad
neighbourhood around zero.

7.2. Risk comparison in a simulated Poisson setting. Here we illustrate the mean
squared error (mse) behaviour of model averaged and post-model selection estimators for
Poisson regression. The situation we study has the narrow model containing an intercept
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only, whereas in the widest model four variables are included. In other words, counts Yi are
independent and Poisson with parameters ξi, where ξ(ui) = exp(β0 +

∑4
j=1 γjui,j). There

are at the outset 2q = 16 different submodels to consider, corresponding to inclusion
or not of the four γjs. In the simulation study we took β0 = 1 and δ = (1, 1, 1, 1)t,
i.e. γj = 1/

√
n, and chose two focus points in the covariate space, u = (1,−0.9,−0.9, 1)t

and u = (1, 1,−0.6,−0.6)t. The four covariates ui,1, . . , ui,4 were taken to be independent
and standard normal. Estimators were then simulated 1,000 times for each setting using
the empirical Ĵ matrix n−1

∑n
i=1 ξ̂(ui)uiu

t
i, with its submatrices and corresponding K

matrix, and the ω vector calculated for each choice of u as ω̂ = ξ̂(u)(Ĵ10/Ĵ00 − u). While
the main point here is to compare methods for finite sample sizes, we also include in the
table the population quantities τ2

0 +R(δ), which by Theorem 4.1 are the limits of n times
mse. To compute these we use the fact that Jfull = exp(β0)I5, from properties of the
normal covariate distribution, in terms of the 5 × 5 identity matrix, and which entails
K = exp(−β0)I4. We then evaluated R(δ) by taking the average of a full million simulated
versions of {ωtδ̂(D)− ωtδ}2, with δ̂(D) as in (4.2) and D ∼ N4(δ,K).

Table 7.1 shows simulated nmse values for the following estimators: post model selec-
tion using AIC and FIC; model averaged estimators using smoothed AIC and FIC weights
as in (5.2) and (5.4), the latter with κ = 1; the wide model estimator; and a testing
approach where each variable is tested individually at a 5% level and only the significant
variables are kept in the final model. Two sample sizes are used, n = 50 and n = 200. From
the table it is observed that the model averaged estimators have much lower mse values
than the corresponding post-model selection estimators which select one single model. For
these settings, the FIC yields significantly smaller mse values than the AIC. Model aver-
aging also performs better in terms of mse than the wide model method, and outperforms
the simple testing approach. For sample size 200, the simulated values are already close
to the simulated theoretical mse values, confirming the theoretical derivations.

setting (a) setting (b)
n = 50 n = 200 limit n = 50 n = 200 limit

post-AIC 20.26 16.65 17.85 12.13 17.74 14.22
smooth AIC 14.67 13.24 13.73 9.89 13.49 11.27
post-FIC 11.94 10.48 10.86 9.88 11.27 9.87
smooth FIC 8.53 8.19 8.20 7.41 8.22 7.62
wide model 15.47 12.11 12.56 10.01 12.03 10.11
testing 16.57 14.97 20.17 11.85 16.06 16.55

Table 7.1. Poisson regression with q = 4 extra variables. Simulated nmse values
for setting (a): u = (1,−0.9,−0.9, 1)t and (b): u = (1, 1,−0.6,−0.6)t.

Table 7.2 shows for the same settings simulated coverage probabilities for ξ(u) at a
nominal 95% level, for sample sizes n equal to 50, 100 and 200, based on 10,000 simulation
replicates of all estimators. The table includes first results of application of definitions
(4.8) with Dn =

√
nγ̂full for the first four methods shown: post-model selection using AIC
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and FIC (with κ = 1), and their smoothed model averaged versions. The approach by
Buckland et al. (1997) uses the same smoothed AIC weights, but then uses the standard
error estimate described in Section 4.3 above in conjunction with a simple non-biased
normal approximation. The table furthermore displays results for the confidence interval
coming from using the widest model estimator and the testing strategy explained above,
both employing standard normal percentiles. It also shows the results of what happens to
the coverage probability when ignoring the model selection step after AIC or BIC model
selection.

With increasing sample size the corrected versions approach the nominal level of 95%,
although the smoothed FIC values are a little larger than the nominal value, at least for
this setting. By construction, the wide method is the safest method and will produce
asymptotically correct confidence intervals. As a consequence of using an imperfect distri-
butional approximation, the method by Buckland et al. does not reach nominal coverage in
the performed simulations. The testing approach using normal percentiles produces con-
fidence intervals with significantly lower than nominal coverage values. And as expected
from theoretical considerations, see Section 4.3 above, ignoring model selection results in
confidence intervals with too low coverage probabilities, as is illustrated by the last two
lines in the table.

setting (a) setting (b)
n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

post-AIC 0.935 0.946 0.948 0.941 0.948 0.946
smooth AIC 0.935 0.946 0.948 0.942 0.946 0.946
post-FIC 0.933 0.946 0.955 0.939 0.946 0.949
smooth FIC 0.957 0.967 0.974 0.957 0.968 0.971
Buckland et al. 0.925 0.926 0.929 0.928 0.897 0.916
wide model 0.936 0.947 0.948 0.944 0.947 0.946
testing 0.815 0.833 0.828 0.846 0.768 0.786
naive AIC 0.773 0.827 0.820 0.833 0.732 0.783
naive BIC 0.720 0.700 0.690 0.748 0.568 0.638

Table 7.2. Poisson regression with q = 4 extra variables. Simulated cover-
age probabilities for ξ(u) for setting (a): u = (1,−0.9,−0.9, 1)t and (b): u =
(1, 1,−0.6,−0.6)t.

8. Generalised ridging: Shrinking in parametric models

The development of Section 4 gave an instructive bridge from compromise estimators µ̂
of type (4.1) to estimators of ψ = ωtδ of type (4.6). For some purposes the class of
(4.1) estimators is not quite large enough, however. For example, Theorem 4.1 does not
cover the full class of natural âj(z) = ωjk

1/2
j Wj(Z)Zj type estimators encountered as a

consequence of exploiting this theorem; see Remark 4.3. This section expands the horizon
by proposing and investigating certain generalised ridge estimators, which shrink the γ̂S

estimators toward γ0. Such shrinking may be particularly beneficial when the number q of
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extra parameters is moderate or growing compared to a fixed number p of core parameters
θ. A quite general class of BMA estimators will in fact behave just in this way, as seen in
Section 9.

The intention is to stick to the narrow model as a form of basis, but to consider
down-weighting aspects of the more risky γ-extensions, via estimators of the form γ̃S that
shrink the γ̂S towards γ0, with an amount somehow dictated by Dn. The idea is to use
(θ̂S , γ̃S , γ0,Sc) as estimators in the S subset model, and more specifically

µ̃S = µ(θ̂S , γ̃S , γ0,Sc), where γ̃S − γ0,S = {1− εS(Dn)}(γ̂S − γ0,Sc),

for suitable functions εS(d). The cases encountered earlier correspond to these functions
being identically zero. For these estimators,

( √
n(θ̂S − θ0)√
n(γ̃S − γ0,S)

)
→d

(
CS

{1− εS(D)}DS

)
,

which leads to

√
n(µ̃S − µtrue) →d ΛS = (∂µ

∂θ )tCS + ( ∂µ
∂γS

)t{1− εS(D)}DS − (∂µ
∂γ )tδ.

With some algebraic work we find

ΛS = (∂µ
∂θ )tJ−1

00 M + ωt{(I −K−1/2HSK
1/2)tδ −K1/2HSK

−1/2W}
− εS(D)(∂µ

∂γ )tK1/2HSK
−1/2(δ +W ).

To work with estimator-after-selection estimators we are again led to consider the class of
estimators

µ̃ =
∑

S

c(S |Dn)µ̃S =
∑

S

c(S |Dn)µ(θ̂S , µ̃S , γ0,Sc), (8.1)

with coefficients summing to 1 and allowed to depend on Dn of (3.1). There is a limiting
distribution for

√
n(µ̃− µtrue) admitting the representation

Λ = (∂µ
∂θ )tJ−1

00 M + ωt{δ −G(D)t(δ +W )} − (∂µ
∂γ )tG∗(D)t(δ +W ),

where G(D) =
∑

S c(S |D)K−1/2HSK
1/2 and G∗(D) =

∑
S c(S |D)εS(D)K−1/2HSK

1/2.
A special case of interest is when each εS(D) the same, corresponding to equal ridging in
all γj directions. Then G∗(D) = ε(D)G(D).

These efforts lead to a limiting risk expression for estimators of the form (8.1), namely

EΛ2 = τ2
0 + E

[
ωt{δ −G(D)tD} − (∂µ

∂γ )tG∗(D)tD
]2 = τ2

0 + E(ψ̃ − ωtδ)2,

say, where the estimator of ψ = ωtδ this time becomes

{ωtG(D)t + (∂µ
∂γ )tG∗(D)t}D =

[
(∂µ

∂θ )tJ−1
00 J01G(D)t − (∂µ

∂γ )t{G(D)−G∗(D)}t]D.
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This would take the form ψ̃ =
[
(∂µ

∂θ )tJ−1
00 J01−{1− ε(D)}(∂µ

∂γ )t
]
G(D)tD in the case of the

same ε(D) for all subsets under consideration. We see that this bridges from the situation
of Theorem 4.1, for ε(D) = 0, to the result for the narrow procedure, for ε(D) = 1. It also
shows that using ε(D) may shrink down the size of the ∂µ

∂γ component here, in its turn
often lowering the variance level.

9. A frequentist view of BMA

Bayesian model averaging essentially amounts to putting down prior probabilities p(S) for
all submodels, prior distributions πS(θ, δS) for the parameters inside the S submodel, and
then applying Bayes’ theorem suitably. The basics of such machineries is covered in Draper
(1995) and Hoeting et al. (1999). In our framework, the posterior of the parameters may
be expressed as

πn(θ, δ) =
∑

S

pn(S)πn,S(θ, δS). (9.1)

Here πn,S(θ, δS) is the posterior calculated under the S model (in particular, then δj = 0
for j /∈ S) while pn(S) = p(S)λn(S)/

∑
S′ p(S

′)λn(S′) is the probability of model S given
data. Here

λn(S) =
∫
Ln,S(θ, γ0 + δS/

√
n)πS(θ, δS) dθ dδS (9.2)

is the integrated likelihood of model S, involving the likelihood Ln,S for this model. The
λn(S) is also the marginal distribution at the observed data. Below we derive approxima-
tions and precise limit distribution results for the quantities involved in (9.1) and (9.2),
under our local alternatives framework. Limit behaviour of BMA schemes has apparently
not been studied before.

9.1. The posterior model probabilities. We need to understand the behaviour of
λn(S). The familiar BIC statistic stems in fact from an approximation to this quantity.
To review and comment on this approximation, let as before θ̂S and δ̂S =

√
n(γ̂S − γ0,S)

be the maximum likelihood estimators inside the S model. Then

λn(S) .= Ln,S(θ̂S , γ̂S)n−(p+|S|)/2(2π)(p+|S|)/2|Jn,S |−1/2πS(θ̂S , δ̂S) (9.3)

is one possible approximation. Here Jn,S = −n−1
∑n

i=1 ∂
2 log f(Yi, θ̂S , γ̂S)/∂αS∂α

t
S is the

observed information matrix of size (p+ |S|)× (p+ |S|), using αS to denote the parameter
vector with θ and γS . The consequent 2 log λn(S) ≈ 2max logLn,S− (p+ |S|) log n is often
called ‘the BIC approximation’; see e.g. Hoeting et al. (1999, equation (13), modulo an
incorrect constant). Claim (9.3) may be proved using arguments similar to those needed
to show Proposition 9.1 below.

It is important to note, though, that the asymptotic approximation (9.3), which un-
derlies the BIC, is valid in the framework of fixed models f(y, θ, γ) and a fixed ftrue(y),
and where in particular also δ =

√
n(γ − γ0) grows with n. In such a framework the best
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model will win in the end, that is, the candidate model S0 with smallest Kullback–Leibler
distance to the true density will have pn(S0) → 1 as n grows. This follows since the domi-
nant term of max logLn,S will be n times max

∫
ftrue(y) log f(y, θ, γ) dy. In our framework

of local alternative models the magnifying glass is focussed on the
√
n(γ − γ0) scale, and

different results apply. Maximised log-likelihoods are then not Op(n) apart, as under the
fixed models scenario, but have differences related to noncentral chi squared distributions.
Secondly, the n−|S|/2 ingredient above, crucial to the BIC, disappears.

For the following result, which provides a more accurate approximation than the
BIC-related (9.3) when the scale of model departures from the narrow model is that of
δ =

√
n(γ − γ0).

Proposition 9.1. Let the prior for the S subset model take the form π0(θ)πS(δS),
with π0 continuous in a neighbourhood around θ0. Then, under standard regularity con-

ditions, when n grows,

λn(S) .= Ln,S(θ̂S , γ̂S)n−p/2(2π)(p+|S|)/2π0(θ̂S)|Jn,S |−1/2κn(S),

where κn(S) =
∫
φ(δS − δ̂S , J

11
n,S)πS(δS) dδS . The approximation holds in the sense that

log λn(S) is equal to the logarithm of the right hand side plus a remainder term of size

Op(n−1/2). Also, J11
n,S is the lower right-hand |S| × |S| submatrix of J−1

n,S .

When n grows we also have Jn,S →p JS , defined in Section 3.1, and the limit of J11
n,S is

KS = (πSK
−1πt

S)−1. Combining this with some previous results, reached in conjunction
with (3.4), we find

λn(S) .= const. exp( 1
2 δ̂

t
SK

−1
S δ̂S)(2π)|S|/2|JS |−1/2

∫
φ(δS − δ̂S ,KS)πS(δS) dδS ,

where the constant in question is n−p/2(2π)p/2π0(θ̂). This also leads to a precise description
of posterior probabilities for the different models in the canonical limit experiment. This is
the situation of large n where all quantities have been estimated with full precision except
δ, for which we must be content with the limit D ∼ N(δ,K) of Dn =

√
n(γ̂full − γ0). Here

p(S |D) ∝ p(S)λ(S), where

λ(S) = exp( 1
2D

t
SK

−1
S DS)(2π)|S|/2|JS |−1/2

∫
φ(δS −DS ,KS)πS(δS) dδS

= exp( 1
2AICS) exp(|S|)(2π)|S|/2|JS |−1/2

∫
φ(δS −DS ,KS)πS(δS) dδS

and DS = KSπSK
−1D. We use here AICS = Dt

SK
−1
S DS − 2|S| from Section 3.3.

9.2. Bayesian model choice with the canonical normal priors. The primary special case
is when δS has the prior N(0, τ2

SKS). This corresponds to independent and equally spread-
out priors around zero for the transformed parameters aS = πSa, where a = K−1/2δ on
the canonical scale, and where again Z ∼ Nq(a, I). Then

λ(S) = exp
(

1
2

τ2
S

1 + τ2
S

Dt
SK

−1
S DS

)
(1 + τ2

S)−|S|/2|J00|−1/2. (9.4)
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The last determinant is independent of |S|, and emerges via |JS |−1/2|KS |−1/2, since |JS | =
|J00| |KS |−1. Result (9.4) is also valid for S = ∅, corresponding to the narrow model, for
which λ(∅) = |J00|−1/2.

This also gives rise to a new Bayesian information criterion, which we may term the
BLIC, with L for ‘local’, reminding us of the local model extension framework (2.2). This
criterion is reached by following the original BIC path, but using a different statistical
magnifying glass, focussing on γ0 + δ/

√
n type neighbouring models. From (9.4), our

criterion reads

BLIC =
τ2
S

1 + τ2
S

Dt
SK

−1
S DS − |S| log(1 + τ2

S) + 2 log p(S),

since the posterior model probability is close to being proportional to p(S)λ(S). Here
τS is meant to be a spread measure for δS in submodel S, and for the narrow model
BLIC = 2 log p(∅). The candidate model with largest BLIC is the most probable one,
given data, in the Bayesian formulation, and is selected.

The formula above is valid for the limit experiment. For real data we use δ̂S for DS ,
leading to

B̂LIC =
τ2
S

1 + τ2
S

n(γ̂S − γ0,S)tK̂−1
S (γ̂S − γ0,S)− |S| log(1 + τ2

S) + 2 log p(S).

Furthermore, we may estimate the spread. First, Dt
SK

−1
S DS given δ is a noncentral

chi squared with parameter δtSK
−1
S δS . Taking the mean of |S| + δtSK

−1
S δS again gives

|S|(1 + τ2
S). We may thus suggest 1 + τ2

S estimated, in this empirical Bayes fashion, by
Dt

SK
−1
S DS/|S|. This gives say

BLIC∗ = |S|{τ̂2
S − log(1 + τ̂2

S)}+ 2 log p(S), with τ̂2
S = max{Dt

SK
−1
S DS/|S| − 1, 0}.

Various alternatives may also be considered.

9.3. Posteriors in submodels. We need to investigate the behaviour of the posterior
distributions πn,S(θ, δS), conditional on model S, and in particular their means µ̃S =
ES(µ | data). It will become clear that for large n, the distribution of θ will be tightly
concentrated around θ̂S , while the part of the prior related to δS will not be ‘washed away’
by the data. This is since the chimeric parameter δ will not be consistently estimated as
data accumulate; the best we may do is via δ̂full →d Nq(δ,K). The posterior for δS will in
fact go to

πS(δS | δ̂S) = const. πS(δS) exp{− 1
2 (δS − δ̂S)tK−1

S (δS − δ̂S)}
= const. πS(δS)φ(δS − δ̂S ,KS),

(9.5)

as shall be seen below. Thus E(δS |data) is for large n essentially a function of δ̂S , which
again is a function of Zn of (3.3), per Section 3.3. In the limit experiment, where δ̂S →d
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DS = KSπSK
−1(δ +W ) with mean KSπSK

−1δ and variance matrix KS , write

EL(δS |DS) =

∫
δSπS(δS) exp{− 1

2 (δS −DS)tK−1
S (δS −DS)}dδS∫

πS(δS) exp{− 1
2 (δS −DS)tK−1

S (δS −DS)}dδS
.

We then have the following extension of Lemma 3.3.

Proposition 9.2. Under the conditions of the previous proposition, the Bayesian

submodel estimator µ̃S = ES(µ | data) is asymptotically equivalent to the simpler estimator

µ̄S = E{µ(θ̂S , γ0,S + δS/
√
n) | δ̂S}, where the distribution in question is that of (9.5). Also,

√
n(µ̃S − µtrue) →d Λ̃S = (∂µ

∂θ )tCS + ( ∂µ
∂γS

)t EL(δS |DS)− (∂µ
∂γ )tδ.

9.4. BMA approximations. The approximations to µ̃S indirectly touched on here are of
separate value. The simplest of these, from the second half of the proof, is µ̂S−( ∂µ

∂γS
)t{δ̂S−

E(δS | δ̂S)}. It is also useful to record an approximation to the conditional variance σ̃2
S =

VarS(µ |data). One first may show that σ̃2
S = E{µ(θ̂S , γ0,S + δS/

√
n)2 | δ̂S}− µ̃2 + o(n−1),

and is then via (9.5) and renewed Taylor expansion led to σ̃2
S
.= n−1( ∂µ

∂γS
)t Var(δS | δ̂S) ∂µ

∂γS
.

The primary special case here is again the normal priors for δS studied in Section 8.2.
Then the posterior is normal with mean ρS δ̂S and variance ρSKS , where ρS = τ2

S/(1+τ2
S).

Thus

µ̃S
.= µ̂S − ( ∂µ

∂γS
)tδ̂S(1− ρS) and σ̃2

S
.= n−1( ∂µ

∂γS
)tKS

∂µ
∂γS

ρS .

Also, from the proposition, Λ̃S = (∂µ
∂θ )tCS + ρS( ∂µ

∂γS
)tDS − (∂µ

∂γ )tδ. But this is exactly as
in Section 6, with shrinking factor εS(D) = 1− ρS = 1/(1 + τ2

S) independent of D. When
τS is small, the prior is informative and tight, the shrinkage high, and the Bayes estimator
is in the τS → 0 limit the same as the narrow estimator µ̂narr. If on the other hand τS

becomes big, then the prior is diffuse and the shrinkage small; in the limit case τS → ∞,
the Bayes estimator is the same as the maximum likelihood estimator µ̂S .

For BMA estimators the limiting risk function to study is R(δ) = E(ψ̃−ωtδ)2, where

ψ̃ = ωtG(D)tD + (∂µ
∂γ )tG∗(D)tD,

G(D) =
∑

S c(S |D)K−1/2HSK
1/2 and G∗(D) =

∑
S c(S |D)(1 + τ2

S)−1K−1/2HSK
1/2.

Furthermore, c(S |D) is proportional to p(S)λ(S), with λ(S) as in (9.4).
A result analogous to (9.1) holds for the posterior distribution of µ = µ(θ, γ0 +δ/

√
n),

which we write as πn(µ) =
∑

S pn(S)πn,S(µ). The Bayes estimator (under quadratic loss)
becomes µ̃ = E(µ |data) =

∑
S pn(S)µ̃S while Var(µ | data), the natural Bayesian measure

of spread, becomes
∑

S pn(S){σ̃2
S + (µ̃S − µ̃)2}. These formulae allows one to carry out

approximate BMA analysis with simple computations, without e.g. MCMC computations.
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10. Concluding remarks

10.1. Amendments when the largest model does not hold. Our machinery has been
developed under the key assumption (2.2), which says that the true data generating mecha-
nism should be inside the largest of the parametric models considered. Such an assumption
may be checked via goodness-of-fit methods, but can never be established with full cer-
tainty. Here we investigate briefly what happens when assumption (2.2) is not required to
hold, relying on extended theory developed in Claeskens and Hjort (2003, Section 8).

Assume that the true density for data takes the form

ftrue(y) = f(y, θ0, γ0){1 + r(y)/
√
n}+ o(1/

√
n) (10.1)

for a suitable r(y) function, with
∫
f0|r| dy finite and

∫
f0r dy = 0, where f0(y) =

f(y, θ0, γ0). Condition (2.2) corresponds to the special case r(y) = V (y)tδ, with V (y)
as in Section 3.1. Since there are no ‘true parameters’ now, consider instead the least
false parameter, say µlf = µ(θn, γn). Here (θn, γn) are the least false parameters in-
side the f(y, θ, γ) family, i.e. those minimising which is the Kullback–Leibler distance∫
ftrue(y) log{ftrue(y)/f(y, θ, γ)}dy. It is shown in Claeskens and Hjort (2003, Section 8)

that θn = θ0 +η0/
√
n and γn = γ0 + δ0/

√
n, apart from terms of lower order, for constants

η0, δ0 depending on
∫
f0Ur dy and

∫
f0V r dy, as explained there. It is also shown that

√
n(µ̂S − µlf) →d Λ̃S = (∂µ

∂θ )tJ−1
00 M + ωt{δ0 −K1/2HSK

−1/2(δ0 +W )}. (10.2)

This is actually close to the result derived in Lemma 3.3, but now under wider start
assumptions. The first point to note is that η0 has dropped out, the second is that the
agnostic parameter δ0 takes the place of our earlier δ. Also, Dn = δ̂full →d D = δ0 +W ∼
Nq(δ0,K), in generalisation of (3.1). This means that the theory of Sections 4–6, about
compromise, post-selection and shrinkage estimators essentially goes through, with small
amendments, and the methods developed are still in force. The difference is mostly related
to interpretation, not to algorithms, so to speak; precision of estimators is interpreted and
assessed in terms of closeness of the agnostic µlf , rather than to the ‘true’ focus parameter.

10.2. Breadth of applications. It should be clear from our unified framework and
application examples that there is a wide range of potential applications of our methods.
Subset selection and model averaging can in particular be implemented and studied for
quite general regression models, like generalised linear models. Versions of our methods
and results would also hold for models with dependence and for various stochastic process
models. The essential requirement is that ordinary likelihood analysis should be valid, with
limiting normality of the maximum likelihood estimators and so on. Our study indicates
that it would be useful to carry out more extensive risk comparisons in the limit experiment,
as touched on in Section 7.1, in that conclusions reached there will have implications for a
fair range of situations.
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10.3. Tolerance radii. Sometimes ignorance is strength, and it may be better to stick
to a simple model than going for a more complex one. This is captured well by our results
of Sections 3 and 4. These may be used to characterise situations where a given S subset
model gives better results than a competing S′. We find in particular that inference using
the narrow model is better than using the fullest model provided |ωtδ| ≤ (ωtKω)1/2. For
a given estimand this describes a band of infinite length for δ. On the other hand, inside
the ellipsoid where δtK−1δ ≤ 1 narrow model inference is better than full model inference,
for all estimands.

10.4. Two uses of models. Sometimes statistical modelling strives for coming close
to a superior scientific explanation of the phenomenon being studied, e.g. in physics or
biology. In this article we are employing models differently, as pragmatic approximations
to reality, with the aim of generating estimates and predictions with good precision. See
the engaging discussion of Breiman (2001) and Section 1 of Claeskens and Hjort (2003) for
further comments.

10.5. Optimal methods. In addition to methods proposed in Section 5 one may try to
develop FMA schemes with suitable optimality properties. The Bayes methods we have
discussed are optimal w.r.t. the criterion of minimising prior-weighted risk. The full-model
estimator is the unique minimax estimator, under the (ωtδ − ωtδ̂)2 loss function, with
constant risk ωtKω. Other criteria might in one way or another involve ideas of restricting
max-risk under the constraint of doing well at or near δ = 0. Methods developed, for other
purposes, in Bickel (1981, 1983, 1984) and Berger (1982) are of relevance here, but cannot
be applied directly in that we restrict attention to FMA regimes.

10.6. Bootstrapping does not work. To explain why bootstrapping cannot be relied
upon in our model choice framework, consider the following situation. It is simple but
representative of our general local model choice context. There are independent observa-
tions Yi ∼ N(µ, 1), where the narrow model holds that µ = 0 and the wider model takes
µ unknown; thus µ̂full = Ȳn. In the framework of local alternatives µ = δ/

√
n, where

Zn =
√
nȲn is the natural test statistic, consider a model average estimator µ̂ which gives

weight 1 −W (Zn) to µ̂narr and weight W (Zn) to µ̂full, that is, µ̂ = W (
√
nȲn)Ȳn. First

study
Λn =

√
n(µ̂− µtrue) = W (

√
nȲn)

√
nȲn − δ =d W (δ +N)(δ +N)− δ,

where N represents a standard normal. Then study bootstrapped data Y ∗i from the esti-
mated full model N(µ̂full, 1), with resulting bootstrap estimator µ̂∗ = W (

√
nȲ ∗n )Ȳ ∗n . Here

we find

Λ∗n =
√
n(µ̂∗ − µ̂) = W (

√
nȲ ∗n )

√
nȲ ∗n − δ̂ =d W (δ̂ +N ′)(δ̂ +N ′)− δ̂,

where N ′ represents another standard normal, independent of N above. Thus the distribu-
tions of Λn and Λ∗n are not close (excluding now the special case W = 1, which corresponds
to using the wide estimator), since δ̂ =

√
nµ̂ does not go to δ in probability.
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10.7. Finite-sample correction and non-ML estimators. We have made extensive use
of the first-order asymptotic theory for maximum likelihood estimation, yielding clear and
concise descriptions of limit distributions etc. While this is already quite satisfactory it
is clear that suitable finite-sample corrections could be developed, perhaps for particular
classes of models, in order to improve approximations. Work by Hurvich and Tsai (1989),
extensively discussed in Burnham and Anderson (2002), is of relevance here. Another
direction for future research is that of using robust estimators, perhaps of the M-estimator
variety, instead of maximum likelihood estimators. It may also be important to use more
robust weighting schemes.

11. Proofs of lemmas and theorems

For the set-up of Section 3.1, it is assumed that the log-density has two continuous partial
derivatives around (θ0, γ0), so that

log
f(y, θ0 + s, γ0 + t)

f(y, θ0, γ0)
=

(
U(y)
V (y)

)t (
s
t

)
+ 1

2

(
s
t

)t

W (y)
(
s
t

)
+R(y, s, t) (11.1)

for (s, t) small in Rp+q, involving the matrix W (y) of second log-density derivatives at the
null point and a remainder term R(y, s, t). It is also required that the variance matrix Jfull

of (U(Y ), V (Y )) under f0(y) = f(y, θ0, γ0), which is also the negative mean of W (Y ) under
f0, is finite and of full rank. This also gives rise to the representation f(y, θ0, γ0 + t) =
f0(y){1+V (y)tt+R2(y, t)}, where R2(y, t) is typically small enough to make f0(y)R2(y, t)
of order o(‖t‖2) uniformly in y, and to

ftrue(y) = f0(y){1 + V (y)tδ/
√
n+R2(y, δ/

√
n)}. (11.2)

Various sets of regularity conditions may now be put up to reach the desired conclusions,
working either with (11.1) or (11.2) as convenient. Consider in fact the following assump-
tions.

(C1): The two integrals
∫
f0(y)U(y)R2(y, t) dy and

∫
f0(y)V (y)R2(y, t) dy are both

o(‖t‖). (C2): The variables |U2
i Vj | and |V 2

i Vj | have finite mean under f0, for each i, j.
(C3): The two integrals

∫
f0(y)‖U(y)‖2R2(y, t) dy and

∫
f0(y)‖V (y)‖2R2(y, t) dy are both

o(1). (C4): The log density has three continuous derivatives w.r.t. all p+ q parameters in
a neighbourhood around (θ0, γ0), and are there dominated by functions with finite means
under f0. Conditions (C1) and (C3) are quite weak, and are implied by the stronger
condition (C4). Then the integrals of (C1) and (C3) are in fact o(‖t‖2). Condition (C4)
will hold for most models, as will (C2).

Proof of Lemma 3.1, under conditions (C1), (C2), (C3): This is accomplished
via the multivariate Lindeberg theorem (which is the univariate Lindeberg theorem in
conjunction with the Cramér–Wold device; see e.g. Serfling (1980, Section 1.9)). (C1)
implies EU(Yi) = J01δ/

√
n + o(1/

√
n) and EV (Yi) = J11δ/

√
n + o(1/

√
n), while (C2)
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and (C3) see to it that the variance matrix of
√
n(Ūn, V̄n) goes to Jfull. The Lindeberg

requirement for asymptotic normality here demands integrals of U2
i I{‖U‖ ≥

√
nε} and

V 2
i I{‖V ‖ ≥

√
nε} w.r.t. the (11.2) density to go to zero, and this is secured, for each

positive ε, under (C2) and (C3).

Proof of Lemma 3.2, under condition (C4): This follows by suitable extension
of traditional arguments given for proving asymptotic normality of maximum likelihood
estimators in fixed parametric models, see e.g. Lehmann (1983, Ch. 6). The essence is that

( √
n(θ̂S − θ0)√
n(γ̂S − γ0,S)

)
.= J−1

S

( √
nŪn√
nV̄n,S

)
→d

(
J00,S J01,S

J10,S J11,S

) (
J01δ +M

πSJ11δ +NS

)
,

with NS denoting the vector of Njs with j ∈ S.
We mention that Lemma 3.2 often may be proved to hold under weaker conditions

than (C4), in cases where the log density is concave in the parameters. This is important
for the somewhat more difficult statements and proofs required when extending Lemmas
3.1–3.3 to regression models. Space does not allow us giving such in suitable detail here,
but transparent proofs, under minimal conditions of the type n−1/2 maxi≤n ‖xi‖ → 0, may
be given for log-concave models using convexity arguments of Hjort and Pollard (1994).

Proof of Lemma 3.3. Using a delta method type Taylor expansion for µ(θ̂S , γ̂S)−
µ(θ0, γ0 + δ/

√
n), in conjunction with Lemma 3.2, we easily establish that there is a limit

distribution, which can be represented as ΛS = (∂µ
∂θ )tCS + ( ∂µ

∂γS
)tDS − (∂µ

∂γ )tδ. (For the
delta method, see e.g. Barndorff-Nielsen and Cox (1989, Ch. 2.) It is furthermore clear
that ΛS in this form is normal, and it is not difficult to work out valid expressions for
mean and variance, and hence the limiting mean squared error. We will take the trouble
to first derive certain simplified expressions for ΛS , however, since these will be fruitful
also for other purposes.

Using Lemma 3.2 in connection with expressions for the blocks of J−1 one finds after
some algebraic manipulations that

CS = (J00,SJ01 + J01,SπSJ11)δ + J00,SM + J01,SNS

= J−1
00 J01(I −K1/2HSK

−1/2)δ + J−1
00 M − J−1

00 J01π
t
SKSπS(N − J10J

−1
00 M)

= J−1
00 J01(I −K1/2HSK

−1/2)δ + J−1
00 M − J−1

00 J01K
1/2HSK

−1/2W,

while similarly

DS = (J10,SJ01 + J11,SπSJ11)δ + J10,SM + J11,SNS = KSπSK
−1(δ +W ).

This leads to a fruitful expression for ΛS in terms of bias part and a zero-mean normal.
Its mean is btSδ, where

bS = (I −K−1πt
SKSπS)J10J

−1
00

∂µ
∂θ + (K−1πt

SKSπS − I)∂µ
∂γ = (I −K−1/2HSK

1/2)ω.

Working similarly with the random part we find the expression for ΛS given in Lemma 3.3.
Using the independence between M and W , which was noted before stating this lemma,
we easily obtain the variance formula stated in the lemma.
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Proof of Theorem 4.1. There is simultaneous convergence in distribution of all
the

√
n(µ̂S − µtrue) jointly with Dn to the corresponding collection of ΛS and D. This

follows via arguments used to prove Lemma 3.3, and the fact that all limit variables can
be expressed in terms of (M t, N t)t. Thus there is also joint convergence in distribution
of all

√
n(µ̂S − µtrue) with c(S |Dn) to corresponding ΛS with c(S |D), in that c(S | d) is

almost continuous in d. Consequently,

√
n(µ̂− µtrue) =

∑

S

c(S |Dn)
√
n(µ̂S − µtrue) →d

∑

S

c(S |D)ΛS .

The second expression for Λ follows with some efforts, using that c(S |D) sum to 1 for
fixed D, in conjunction with the representation featured in Lemma 3.3, As commented on
earlier, M and W = D−δ turn out to be stochastically independent. Hence Λ given D = d

is a normal distribution, with Var(Λ | d) = (∂µ
∂θ )tJ−1

00
∂µ
∂θ = τ2

0 , the minimal possible limit
distribution variance for estimators under consideration, and E(Λ | d) = ωt{δ − G(d)td}.
It follows that the limiting mean squared error of an arbitrary estimator in the class under
study can be expressed as EΛ2 = τ2

0 + E[ωt{δ −G(D)tD}]2.
Proof of Proposition 9.1. We choose to work with the case of the full model,

i.e. S = {1, . . . , q}, where we also are content to write θ̂ and δ̂ for θ̂full and δ̂full, and so on.
The general case can be handled quite similarly. Introduce

Qn(s, t) =
Ln(θ̂ + s/

√
n, γ0 + (δ̂ + t)/

√
n)

Ln(θ̂, γ0 + δ̂/
√
n)

=
Ln(θ̂ + s/

√
n, γ̂ + t/

√
n)

Ln(θ̂, γ̂)
.

Then, with Taylor expansion analysis, one sees that

logQn(s, t) = − 1
2

(
s
t

)t

Jn

(
s
t

)
+Op(n−1/2‖

(
s
t

)
‖3).

For a calculation needed in a moment, note that for a symmetric positive definite (p+q)×
(p+ q) matrix A,

∫
exp

{
− 1

2

(
s
t

)t

A

(
s
t

)}
ds = (2π)p/2|A|−1/2|A11|−1/2 exp{− 1

2 t
t(A11)−1t},

where A11 is the q × q lower right-hand submatrix of A−1; this follows from properties of
the multinormal density. Substituting θ = θ̂ + s/

√
n and δ = δ̂ + t in the λn integral now

leads to

λn = Ln(θ̂, γ̂)n−p/2

∫
Qn(s, t)π0(θ̂ + s/

√
n)π(δ̂ + t) dsdt

.= Ln(θ̂, γ̂)n−p/2π0(θ̂)(2π)p/2|Jn|−1/2|J11
n |−1/2

∫
π(δ̂ + t) exp{− 1

2 t
t(J11

n )−1t}dt.

This proves the claims made.
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In this exposition we have glossed over certain technicalities that in a more careful
proof need attention. These have to do with process convergence of logQn(s, t) over the
space of functions of (s, t) defined over a compact region, and secondly with limiting the
size and influence of logQn(s, t) outside such a compact region. We omit these details
here, but refer to techniques and details provided in Hjort (1986), invented and developed
there for a different but sufficiently similar problem.

Proof of Proposition 9.2. We start re-expressing

µ̃S =
∫
µ(θ, γ0,S + δS/

√
n)Ln,S(θ, γ0,S + δS/

√
n)π0(θ)πS(δS) dθ dδS∫

Ln,S(θ, γ0,S + δS/
√
n)π0(θ)πS(δS) dθ dδS

=
∫
µ(θ̂S + s/

√
n, γ0,S + (δ̂S + t)/

√
n)Qn,S(s, t)π0(θ̂S + s/

√
n)πS(+δ̂S + t) dsdt∫

Qn,S(s, t)π0(θ̂S + s/
√
n)πS(δ̂S + t) ds dt

,

in terms of

Qn,S(s, t) =
Ln,S(θ̂S + s/

√
n, γ0,S + (δ̂S + t)/

√
n)

Ln,S(θ̂S , γ̂S)
.= exp

{
− 1

2

(
s
t

)t

Jn,S

(
s
t

)}
,

in generalisation of the Qn process used in the proof of the previous proposition. Taylor
expanding the µ term here w.r.t. the first parameter gives µ(θ̂S , γ0,S + (δ̂S + t)/

√
n) plus

(∂µ/∂θ)(θ̂S , γ0,S + (δ̂S + t)/
√
n) times s/

√
n, and then integrating over s, as with Propo-

sition 7.1, shows indeed that
√
n(µ̃S − µ̄S) →p 0. A fact used here is that the integral of

s times the limit of Qn,S(s, t), over s, is zero.
For the rest of the proof, we use Taylor expansion w.r.t. the second parameter, and

find
µ̄S = E{µ̂S + ( ∂µ

∂γS
)t(δS − δ̂S)/

√
n | δ̂S}+ op(n−1/2),

which when compared to Lemma 3.3 gives the required result.
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Bühlmann, P. (1999). Efficient and adaptive post-model-selection estimators. Journal of
Statistical Planning and Inference 79, 1–9.

Chatfield, C. (1995). Model uncertainty, data mining and statistical inference. Journal of
the Royal Statistical Society, Series A 158, 419–466.

Claeskens, G. and Hjort, N.L. (2003). The focussed information criterion. Journal of the
American Statistical Association, to appear[!].

Draper, D. (1995). Assessment and propagation of model uncertainty [with discussion].
Journal of the Royal Statistical Society, Series B 57, 45–97.

Foster, D.P. and George, E.I. (1994). The risk inflation criterion for multiple regression.
Annals of Statistics 22, 1947–1975.

George, E.I. (1986a). Minimax multiple shrinkage estimation. Annals of Statistics 14,
188–205.

George, E.I. (1986b). Combining minimax shrinkage estimators. Journal of the American
Statistical Association 81, 437–445.

Green, P.J. (2003). Trans-dimensional Markov chain Monte Carlo [with discussion]. In
Highly Structured Stochastic Systems (eds. P.J. Green, N.L. Hjort and S. Richardson),
179–206. Oxford University Press, 2003.

Hoeting, J.A., Madigan, D., Raftery, A.E. and Volinsky, C.T. (1999). Bayesian model
averaging: a tutorial [with discussion]. Statistical Science 19, 382–417. [A ver-
sion where the number of misprints has been significantly reduced is available at
http://www.stat.washington.edu/raftery/.]

Hjort, N.L. (1986). Bayes estimators and asymptotic efficiency in parametric counting
process models. Scandinavian Journal of Statistics 13, 63–85.

Hjort, N.L. and Pollard, D. (1994). Asymptotics for minimisers of convex processes. Sta-
tistical Research Report, Department of Mathematics, University of Oslo.

Hosmer, D.W. and Lemeshow, S. (1989). Applied Logistic Regression. Wiley, New York.

Hurvich, C.M. and Tsai, C.-L. (1989). Regression and time series model selection in small
samples. Biometrika 76, 297–307.

41



Hurvich, C.M. and Tsai, C.-L. (1990). The impact of model selection on inference in linear
regression. The American Statistician 44, 214–217.

Kabaila, P. (1995). The effect of model selection on confidence regions and prediction
regions. Econometric Theory 11, 537–549.

Kabaila, P. (1998). Valid confidence intervals in regression after variable selection. Econo-
metric Theory 14, 463–482.

Leeb, H. and Pötscher, B.M. (2000). The finite-sample distribution of post-model-selection
estimators, and uniform versus non-uniform approximations. Technical Report TR
2000-03, Institut für Statistik und Decision Support Systems, Universität Wien.

Lehmann, E.L. (1983). Theory of Point Estimation. Wiley, New York.

Pötscher, B.M. (1991). Effects of model selection on inference. Econometric Theory 7,
163–185.

Rao, J.S. and Tibshirani, R. (1997). The out-of-bootstrap method for model averaging
and selection. Technical Report, Department of Statistics, University of Toronto.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics 6, 461–464.

Sen, P.K. and Saleh, A.K.M.E. (1987). On preliminary test and shrinkage M -estimation
in linear models. The Annals of Statistics 15, 1580–1592.

Serfling, R. (1980). Approximation Theorems of Mathematical Statistics. Wiley, New
York.

Spiegelhalter, D.J., Best, N.G., Carlin, B.P. and van der Linde, A. (2002). Bayesian
measures of model complexity and fit [with discussion]. Journal of the Royal Statistical
Society B 64, 583–639.

Yang, Y. (2001). Adaptive regression by mixing. Journal of American Statistical Associ-
ation 96, 574–588.

42


